MHB Equation of a Circle: Center on y=6-2x, Passing Through (-2,0) & (4,0)

AI Thread Summary
The discussion focuses on finding the equation of a circle with its center on the line y=6-2x, passing through points A(-2,0) and B(4,0). The center is identified as (x₀, 6-2x₀), leading to the equation of the circle in Cartesian coordinates. By substituting the points A and B into this equation, two equations are derived to solve for the unknowns x₀ and the radius r. The correct center is determined to be C(3,0) with a radius of 5, confirmed through calculations involving the midpoint and perpendicular bisector of line segment AB. The discussion concludes with clarification on the coordinates of point B to ensure accuracy in the solution.
thorpelizts
Messages
6
Reaction score
0
find the equation of a circle whose center falls ont he line y=6-2x and which passes through the points A(-2,0) and B(4,0).

poor in circles. how to even start?
 
Mathematics news on Phys.org
thorpelizts said:
find the equation of a circle whose center falls ont he line y=6-2x and which passes through the points A(-2,0) and B(4,0).

poor in circles. how to even start?

Hi thorpelizts, :)

So the center of the circle should be \((x_{0},6-2x_{0})\). The equation of a circle with radius \(r\) and center \((a,b)\) can be represented in Cartesian coordinates by,

\[(x-a)^2+(y-b)^2=r^2\]

In our case,

\[(x-x_{0})^2+(y-6+2x_{0})^2=r^2\]

Now we know that, \(A\equiv (-2,0)\) and \(B\equiv (4,0)\) lies on the circle. So these two points must satisfy the above equation. Then you will have two equations with two unknowns\((r\mbox{ and }x_{0})\). Hope you can continue.

Kind Regards,
Sudharaka.
 
Hello, thorpelizts!

Another approach . . .

Find the equation of a circle whose center is on the line y\,=\,6-2x
and which passes through the points A(\text{-}2,0) and B(4,0).
Code:
             \|
             6*
              |\
              | \
              |  \
         (0,4)oB  \
             /|    \
            / |     \
           *  |      \
          /   *       \
       A /    |  *     \3
    - - o - - + - - * - + - - -
      (-2,0)  |        * \
              |           oC
              |            \ *
              |
The center lies on the line y \,=\,6-2x
The center lies on the perpendicular bisector of AB.
. . The center is the intersection of these two lines.

The midpoint of AB is (\text{-}1,2)
The slope of AB is 2.
The perpendicular slope is: \text{-}\tfrac{1}{2}
The equation of the perpendicular bisector is:
. . y - 2 \;=\;\text{-}\tfrac{1}{2}(x + 1) \quad\Rightarrow\quad y \:=\:\text{-}\tfrac{1}{2}x + \tfrac{3}{2}

It has an x-intercept at (3,0).
And so does the other line!

Their intersection (and hence the center) is: C(3,0).

The radius is: AC = BC = 5.

Got it?
 
Sudharaka said:
Hi thorpelizts, :)

So the center of the circle should be \((x_{0},6-2x_{0})\). The equation of a circle with radius \(r\) and center \((a,b)\) can be represented in Cartesian coordinates by,

\[(x-a)^2+(y-b)^2=r^2\]

In our case,

\[(x-x_{0})^2+(y-6+2x_{0})^2=r^2\]

Now we know that, \(A\equiv (-2,0)\) and \(B\equiv (4,0)\) lies on the circle. So these two points must satisfy the above equation. Then you will have two equations with two unknowns\((r\mbox{ and }x_{0})\). Hope you can continue.

Kind Regards,
Sudharaka.

Since a complete answer had been posted to the question let me complete my method,

\[(-2-x_{0})^2+(-6+2x_{0})^2=r^2=(4-x_{0})^2+(-6+2x_{0})^2\]

\[\Rightarrow (-2-x_{0})^2=(4-x_{0})^2\]

\[\Rightarrow 4+4x_{0}=16-8x_{0}\]

\[\Rightarrow 12x_{0}=12\]

\[\Rightarrow x_{0}=1\]

Therefore,

\[r^2=(4-1)^2+(-6+2)^2=9+16=25\]

\[\Rightarrow r=5\]

Kind Regards,
Sudharaka.
 
soroban said:
Hello, thorpelizts!

Another approach . . .


Code:
             \|
             6*
              |\
              | \
              |  \
         (0,4)oB  \
             /|    \
            / |     \
           *  |      \
          /   *       \
       A /    |  *     \3
    - - o - - + - - * - + - - -
      (-2,0)  |        * \
              |           oC
              |            \ *
              |
The center lies on the line y \,=\,6-2x
The center lies on the perpendicular bisector of AB.
. . The center is the intersection of these two lines.

The midpoint of AB is (\text{-}1,2)
The slope of AB is 2.
The perpendicular slope is: \text{-}\tfrac{1}{2}
The equation of the perpendicular bisector is:
. . y - 2 \;=\;\text{-}\tfrac{1}{2}(x + 1) \quad\Rightarrow\quad y \:=\:\text{-}\tfrac{1}{2}x + \tfrac{3}{2}

It has an x-intercept at (3,0).
And so does the other line!

Their intersection (and hence the center) is: C(3,0).

The radius is: AC = BC = 5.

Got it?

Hi soroban, :)

I think there is a slight mistake here. You have taken \(B\equiv (0,4)\) whereas it should be \(B\equiv (4,0)\). It does not change the answer for the radius but it certainly give a wrong answer for the center point.

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top