kent davidge said:
If I define the two dimensional sphere in the usual way, this gives me a metric ##ds^2 = r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2##. Can I just define a new coordinate system giving a point coordinates ##(\theta', \phi') = (\theta r^2, \phi r^2 \sin^2 \theta)##?. This gives me the metric ##ds^2 = d\theta'^2 + d\phi'^2##.
If you transform from ##\theta, \phi## to ##\theta', \phi'##, then the metric tensor (actually, the "line element", but you can figure out the metric tensor from that) transforms as follows:
##r^2 d\theta^2 + r^2 sin^2(\theta) \Rightarrow r^2 (\frac{\partial \theta}{\partial \theta'} d\theta' + \frac{\partial \theta}{\partial \phi'} d\phi')^2 + r^2 sin^2(\theta) (\frac{partial \phi}{\partial \theta'} d\theta' + \frac{\partial \phi}{\partial \phi'} d\phi')^2##
In your particular case, you want ##\theta' = r \theta## and ##\phi' = r sin(\theta) \phi##. You have to get ##\theta, \phi## in terms of ##\theta', \phi'## first:
##\theta = \frac{1}{r} \theta'##
##\phi = \frac{1}{r sin(\frac{\theta'}{r})} \phi'##
So
##\frac{\partial \theta}{\partial \theta'} = \frac{1}{r}##
##\frac{\partial \theta}{\partial \phi'} = 0##
##\frac{\partial \phi}{\partial \theta'} = - \frac{cos(\frac{\theta'}{r})}{r^2 sin^2(\frac{\theta'}{r})} \phi'##
##\frac{\partial \phi}{\partial \phi'} = \frac{1}{r sin(\frac{\theta'}{r})}##
So in terms of ##\phi', \theta'## you have:
##r^2 (\frac{1}{r} d \theta' + 0)^2 + r^2 sin^2(\frac{\theta'}{r}) (- \frac{cos(\frac{\theta'}{r})}{r^2 sin^2(\frac{\theta'}{r})} \phi' d \theta' + \frac{1}{r sin(\frac{\theta'}{r})} d\phi')^2##
##= (d \theta')^2 + (d \phi')^2 + ## a bunch of other messy terms involving ##(d \theta')^2## and ##d \theta' d\phi'##.