Coordinates of a point outside a plane

AI Thread Summary
To find the coordinates of point G outside a plane given three points A, B, and C on the plane and their respective distances AG, BG, and CG, one must consider the geometric relationships involved. The distances alone do not provide enough information to uniquely determine G, especially if A, B, and C are collinear, leading to multiple potential solutions. If A, B, and C are not collinear and the side of the plane where G lies is known, the components of G can be calculated using the distance formula or trigonometry. The solution involves setting up equations based on the distances and the relationships between the points, ultimately leading to a system of linear and quadratic equations. Careful verification of the solutions is necessary to ensure consistency across the derived values for G.
Vivio
Messages
3
Reaction score
0
Hello,

If you can get me a hint for solving this matter it would be much appreciated.

I have the 3D coordinates of three points on a plane A, B, C.

There's another point G and we know AG, BG, CG.

My problem is to find the coordinates of point G:cry:

Thanks in advance!
 
Mathematics news on Phys.org
G=(A+AG,B+BG,C+CG) unless I don't understand what you are saying.
 
If you are given:

A=(A_1,A_2,A_3)
B=(B_1,B_2,B_3)
C=(C_1,C_2,C_3)

And you want to find G=(G_1,G_2,G_3), then knowing:

1) AG=|A-G|=((A_1-G_1)^2+(A_2-G_2)^2+(A_3-G_3)^2)^(1/2)
2) BG=|B-G|
3) CG=|C-G|

is not enough information.

Let h be the perpendicular distance from G to the plane. Then if A, B, and C and there is another point G' on the other side of the plane with perpendicular distance h from the plane also satisfynig 1, 2 and 3 so the solution is not unique. If A, B, and C are collinear you can find an entire circle of points satisfying 1, 2 and 3.

If you know that the A, B, and C are not collinear and which side of the plane G is on, then you can solve for the components of G using the distance formula or trigonometry.
 
Thanks mathman and sin(1/x) for your input :shy:.

I've made a drawing with the problem. I hope all the data are there.

Sorry for my omissions.
 

Attachments

  • Position.jpg
    Position.jpg
    16 KB · Views: 472
I get it now. G=A + |AG|a = B + |BG|b = C + |CG|c, where a,b,c are (unknown) unit vectors. By eliminating G, you will have 6 linear equations for the coordinates of a,b, and c. Using the fact they are unit vectors gives 3 quadratic equations. Solving for them will give you the vectors a,b,c. There will be 2 true solutions. When you solve the quadratics there will be extra solutions, so you need to check to see if you get the same value for G from a given set a,b,c.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top