snoopies622
- 852
- 29
I was looking into the geodesic equations for the Schwarzschild metric and I noticed a discrepancy between two sources: According to http://www.mathpages.com/rr/s5-05/5-05.htm (near the bottom) the second derivative of the azimuth angle is
<br /> <br /> \frac {d^{2} \phi}{d \lambda ^2}=\frac {-2}{r} \frac {dr}{d \lambda} \frac {d \phi}{d \lambda}+ \frac {2}{tan (\theta )}\frac {d \theta}{d \lambda} \frac {d \phi}{d \lambda}<br /> <br />
where \lambda is something proportional to proper time \tau. In Relativity Demystified (David McMahon, 2006 McGraw Hill, page 218) however, the corresponding equation has the second term negative instead of positive. (The other three equations match exactly.) I also have a copy of Lillian R. Lieber's The Einstein Theory of Relativity (Paul Dry Books, 2008) but in her version (p. 269) the second term is missing altogether.
I intend to try to derive these equations myself but I would like to know in advance what the correct versions are so when I'm done I can see if I made any mistakes. Does anyone happen to know which source is right?
<br /> <br /> \frac {d^{2} \phi}{d \lambda ^2}=\frac {-2}{r} \frac {dr}{d \lambda} \frac {d \phi}{d \lambda}+ \frac {2}{tan (\theta )}\frac {d \theta}{d \lambda} \frac {d \phi}{d \lambda}<br /> <br />
where \lambda is something proportional to proper time \tau. In Relativity Demystified (David McMahon, 2006 McGraw Hill, page 218) however, the corresponding equation has the second term negative instead of positive. (The other three equations match exactly.) I also have a copy of Lillian R. Lieber's The Einstein Theory of Relativity (Paul Dry Books, 2008) but in her version (p. 269) the second term is missing altogether.
I intend to try to derive these equations myself but I would like to know in advance what the correct versions are so when I'm done I can see if I made any mistakes. Does anyone happen to know which source is right?