Counterterms in saddle point expansion

  • Thread starter Thread starter geoduck
  • Start date Start date
  • Tags Tags
    Expansion Point
geoduck
Messages
257
Reaction score
2
In the saddle point evaluation of the path integral, at tree level, you plug in the classical solution of the field into the integrand. However, when determining the classical solution, we ignore counterterms. The counterterms only show up to renormalize divergences after a saddle point expansion is made about the classical solution that does not include the counterterms.

Why can we get away with this? It seems mathematically we have to include counterterms in the classical solution for a saddle point expansion to be valid.
 
The counterterms usually contain Planck's constant, so they should go to zero in the classical limit. But there is an interesting discussion of this issue in http://arxiv.org/abs/hep-th/0405239.
 
Don't counter-terms have one more power of the coupling in them than bare terms? For example, for λΦ4, I worked out the the coupling has dimensions [\lambda]=\frac{1}{\hbar c}.

So if we write \lambda=k*\frac{1}{\hbar c}, where k is a pure number, then whether your higher order perturbative terms are small compared to tree level depends on the value of the pure number k, and not on Planck's constant.

So for example, the one-loop 4-pt function is \lambda+k*\lambda^2\log\left( \frac{E}{\mu}\right)*(\hbar c).

I assume that (\hbar c) is in the one-loop correction to make the dimensions of the two terms the same. With n-loops I assume you'll get (\hbar c)^n. But you can't say this is small, because you'll also get \lambda^n, which has units of (\hbar c) in the denominators.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top