Counting infinite sequence of sets

ihatewonders
Messages
3
Reaction score
0
Let K1, K2, K3, . . . be an infnite sequence of sets, where each set Kn is countable.
Prove that the union of all of these sets K = Union from n=1 to infinity, Kn is countable.

I tried to start, but I don't even understand the question

Need some idea on how to start
 
Last edited:
Physics news on Phys.org
Not understanding the question is not a good start. What does 'countable' mean?
 
Denumerable?

The set K would be denumberable if there is a bijection ZZ+->K

by the way, can you teach me how to read "Bijection ZZ+->K?" ZZ+ is the symbol for all positive integer, -> is the arrow pointing to the set K.
and I have trouble understanding what F: NN -> A mean intuitively
 
Last edited:
I don't know what you are talking about. What does ZZ+->X mean? Countable means there is a bijection with N, the natural numbers. This is basically the same proof as showing NxN is countable. How do you do that?
 
I'm sorry, >.< but what does NxN mean? is it the symbol for natural number?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top