A Coupling constant in Yang-Mills Lagrangian

spaghetti3451
Messages
1,311
Reaction score
31
The Yang-MIlls Lagrangian is given by ##\mathcal{L}_{\text{gauge}}
= F_{\mu\nu}^{a}F^{\mu\nu a} + j_{\mu}^{a}A^{\mu a}.##

We can rescale ##A_{\mu}^{a} \to \frac{1}{g}A_{\mu}^{a}## and then we have ##\frac{1}{g^{2}}F_{\mu\nu}^{a}F^{\mu\nu a}.##

How does the second term change? Does the current have any effect on the pre-factor?
 
Physics news on Phys.org
The second term is not in the Lgauge, but it's the coupling of the gauge fields with matter. If you simply rescale the gauge potential, then j is unaffected.
 
  • Like
Likes spaghetti3451
spaghetti3451 said:
The Yang-MIlls Lagrangian is given by ##\mathcal{L}_{\text{gauge}}
= F_{\mu\nu}^{a}F^{\mu\nu a} + j_{\mu}^{a}A^{\mu a}.##

We can rescale ##A_{\mu}^{a} \to \frac{1}{g}A_{\mu}^{a}## and then we have ##\frac{1}{g^{2}}F_{\mu\nu}^{a}F^{\mu\nu a}.##

How does the second term change? Does the current have any effect on the pre-factor?

If the interaction Lagrangian is written as J^{\mu a}A^{a}_{\mu}, then the coupling is hidden in the matter field current. For example, look at the QCD Lagrangian

\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu}F^{\mu\nu a} + i \bar{\psi} \gamma^{\mu} D_{\mu}\psi . Expand this using D_{\mu} = \partial_{\mu} - i g A^{a}_{\mu}T^{a}, you get

\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu}F^{\mu\nu a} + i \bar{\psi} \gamma^{\mu}\partial_{\mu}\psi + g A^{a}_{\mu} \left( \bar{\psi} \gamma^{\mu}T^{a}\psi \right) .
 
  • Like
Likes spaghetti3451
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top