Covariance of partitioned linear combination

showzen
Messages
34
Reaction score
0

Homework Statement


Given random vector ##X'=[X_1,X_2,X_3,X_4]## with mean vector ##\mu '_X=[4,3,2,1]## and covariance matrix
$$\Sigma_X=\begin{bmatrix}
3&0&2&2\\
0&1&1&0\\
2&1&9&-2\\
2&0&-2&4
\end{bmatrix}.$$
Partition ##X## as
$$X=\begin{bmatrix}
X_1\\X_2\\\hline X_3\\X_4\end{bmatrix}
=\begin{bmatrix}
X^{(1)}\\\hline X^{(2)}\end{bmatrix}.$$
Let ##A=[1,2]## and ##B=\begin{bmatrix}1&-2\\2&-1\end{bmatrix}##. Find Cov##(AX^{(1)},BX^{(2)})##.

Homework Equations


Cov##(CX)=C\Sigma_X C'##
Cov##(X^{(1)},X^{(2)})=\Sigma_{12}##

The Attempt at a Solution


Cov(##AX^{(1)},BX^{(2)})=A\Sigma_{12}B'=[1,2]\begin{bmatrix}2&2\\1&0\end{bmatrix}\begin{bmatrix}1&2\\-2&-1\end{bmatrix}=[0,6]##

Although I have arrived at an answer, I do not know how to interpret it. We have scalar ##AX^{(1)}## and vector ##BX^{(2)}##, and we arrive at row vector covariance?
 
Physics news on Phys.org
in general, nice use of latex here. One nitpick: ##\text{Cov}(C \mathbf X)=C\Sigma_X C^T## is wrong. It should read ##\text{Cov}(C \mathbf X, C \mathbf X)=C\Sigma_X C^T## -- the idea of covariance with one argument only doesn't make much sense. The idea more generally here is that ##\text{Cov}(C \mathbf X, D \mathbf X)=C\Sigma_X D^T##. In general a non-symmetric covariance matrix can irk me a bit so I get your question on how it can be a (row) vector result.

The idea here is suppose you have a scalar random variable ##Y_1## and a vector of

##
\mathbf Y = \begin{bmatrix}
Y_2\\
Y_3
\end{bmatrix}##

so the covariance of ##\text{cov}(Y_1, \mathbf Y)## is just covariance of ##Y_1, Y_2## and also covariance of ##Y_1, Y_3##. Collect these results in a vector -- that's it.

- - - -

Another way to approach this problem, would be to use

##A := \left[\begin{matrix}1 & 2 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right]##

and

## B := \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 1 & -2\\0 & 0 & 2 & -1\end{matrix}\right]##

now apply

##\text{Cov}(A \mathbf X, B \mathbf X) = A \text{Cov}( \mathbf X, \mathbf X) B^T = A \Sigma_X B^T=
\left[\begin{matrix}0 & 0 & 0 & 6\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right]
##

and you can just read off the result. E.g. the covariance of the scalar ##\big(A \mathbf X\big)_1## with scalar ##\big(B \mathbf X\big)_4## is given in the top right corner of the resulting matrix. At the end of the day you're interested in that and ##\big( A\mathbf X\big)_1## with scalar ##\big(B \mathbf X\big)_3## which is given in row 1, column 3, and of course is zero.
 
I would interpret it this way: ##U = AX^{(1)}## is a linear combination of the elements of ##X^{(1)}##, which results in a scalar. ##V = BX^{(2)}## is a a pair of linear combinations of the elements of ##X^{(2)}##, which results in a column vector, ##V = \begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}##. Then $$Cov(AX^{(1)}, BX^{(21)}) = Cov(U, V) =
\begin{bmatrix}
Cov(U, V_1) &
Cov(U, V_2)
\end{bmatrix}
$$.
 
Last edited:
Thanks everyone for your help. I see now that the answer is a matrix with elements that are the covariance between ##AX^{(1)}## and the elements of ##BX^{(2)}##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top