physicus
- 52
- 3
Homework Statement
Show that \nabla_a(\sqrt{-det\;h}S^a)=\partial_a(\sqrt{-det\;h}S^a)
where h is the metric and S^a a vector.
Homework Equations
\nabla_a V^b = \partial_a V^b+\Gamma^b_{ac}V^c
\Gamma^a_{ab} = \frac{1}{2det\;h}\partial_b\sqrt{det\;h}
\nabla_a\sqrt{-det\;h} (is that right??) since \nabla_a h
The Attempt at a Solution
I can't quite figure out how to get the result:
\nabla_a(\sqrt{-det\;h}S^a)
=\nabla_a(\sqrt{-det\;h})S^a+\sqrt{-det\;h}\nabla_a(S^a)
=\sqrt{-det\;h}\;\partial_a S^a+\sqrt{-det\;h}\Gamma^a_{ab}S^b
=\sqrt{-det\;h}\;\partial_a S^a+\sqrt{-det\;h}\frac{1}{2det\;h}\partial_b\sqrt{det\;h}S^b
=\sqrt{-det\;h}\;\partial_a S^a+\frac{1}{2\sqrt{-det\;h}}\partial_b\sqrt{det\;h}S^b
=\ldots