Hiche
- 82
- 0
We have this system of equations:
<br /> \begin{cases}<br /> x'= -x + 2y & (1)\\<br /> y' = -2x - y + e^{-t} & (2)<br /> \end{cases}<br />
where x(0) = 0 ; y(0) = 0
We apply the Laplace transform on (1) and (2) and get:
<br /> (s + 1)X - 2Y = 0\\<br /> 2X + (s + 1)Y = \frac{1}{s + 1}<br />
We can use elimination here, but can we apply Cramer's Rule? We find the determinant D = (s + 1)^2 + 4, and to find X_s and Y_s, we use a certain formula. Is this applicabale here?
<br /> \begin{cases}<br /> x'= -x + 2y & (1)\\<br /> y' = -2x - y + e^{-t} & (2)<br /> \end{cases}<br />
where x(0) = 0 ; y(0) = 0
We apply the Laplace transform on (1) and (2) and get:
<br /> (s + 1)X - 2Y = 0\\<br /> 2X + (s + 1)Y = \frac{1}{s + 1}<br />
We can use elimination here, but can we apply Cramer's Rule? We find the determinant D = (s + 1)^2 + 4, and to find X_s and Y_s, we use a certain formula. Is this applicabale here?