Creating turbulence in a small tube

AI Thread Summary
The discussion centers on the creation of turbulence within a larger chamber to enhance air mixing and cooling efficiency. The original poster seeks to understand whether inserting an exit tube into the chamber will promote turbulence or create a high-pressure stagnation zone that could hinder heat transfer. Participants suggest that a flush-mounted exit tube may be more effective for maintaining airflow. The Reynolds Number is mentioned as a relevant equation for assessing flow turbulence. Overall, the conversation emphasizes the importance of design parameters in optimizing airflow and cooling performance.
Dull Tool
Messages
2
Reaction score
0
TL;DR Summary
My question is will this cause turbulence in the larger chamber so that the air from the Yellow Question mark area is being pulled and mixed with the air from the intake area? Is there an equation I can use to know the best depth range to test the set the smaller chamber at? See picture
Dull_tool.jpg

I have an odd question or a project I have been bouncing around in my head and I want to make sure that I am understanding the science of it all correctly. My question is will this cause turbulence in the larger chamber so that the air from the Yellow Question mark area is being pulled and mixed with the air from the intake area? Is there an equation I can use to know the best depth range to test the set of the smaller chamber at? I understand I am going to have to build protypes and get my Dr. Tyson on. I just like to set parameters so I do not have to build more units than necessary. Arrows are air flow. So air is drawn in the over lay, up the heat sink, in the heat sink, into the chamber, then out the exit tube.

I mainly want to know if this will help cool the heated area faster by drawing more heat from causing turbulence in the chamber, as apposed to the exit tube being flush with the end of the chamber.

Thank you all I hope I made it clear what I'm asking.
 
Last edited:
Engineering news on Phys.org
I read your question as should the dashed portion of the exit tube should be inserted into the chamber as-drawn if the goal is to promote turbulent flow within the chamber.

My intuition says this will be more likely (relative to the likeliehood of creating turbulence) to create a high pressure stagnation zone behind the inserted portion of the tube and tend to decrease the overall heat-transfer along the walls of the chamber. I intuit that you are better off with a flush mount exit, for what that opinion is worth. As drawn, I don't see anything that will promote flow to the right of the low pressure point at the mouth of the outlet tube.
 
Grinkle said:
I read your question as should the dashed portion of the exit tube should be inserted into the chamber as-drawn if the goal is to promote turbulent flow within the chamber.

My intuition says this will be more likely (relative to the likeliehood of creating turbulence) to create a high pressure stagnation zone behind the inserted portion of the tube and tend to decrease the overall heat-transfer along the walls of the chamber. I intuit that you are better off with a flush mount exit, for what that opinion is worth. As drawn, I don't see anything that will promote flow to the right of the low pressure point at the mouth of the outlet tube.
Ty I can’t remember what it’s called but I was trying to do the old put the fan a few feet from the window trick to improve the air movement in the chamber…. I’m sorry I just had an epiphany I got to go jot this down before my sleep demanding brain forgets. Thank you you helped more than you know.
 
Go to 14:30 in this video to see how this guy made his intakes, they seemed to do what he wanted.

Mikek
 
Dull Tool said:
TL;DR Summary: My question is will this cause turbulence in the larger chamber so that the air from the Yellow Question mark area is being pulled and mixed with the air from the intake area? Is there an equation I can use to know the best depth range to test the set the smaller chamber at? See picture

View attachment 321957
I have an odd question or a project I have been bouncing around in my head and I want to make sure that I am understanding the science of it all correctly. My question is will this cause turbulence in the larger chamber so that the air from the Yellow Question mark area is being pulled and mixed with the air from the intake area? Is there an equation I can use to know the best depth range to test the set of the smaller chamber at? I understand I am going to have to build protypes and get my Dr. Tyson on. I just like to set parameters so I do not have to build more units than necessary. Arrows are air flow. So air is drawn in the over lay, up the heat sink, in the heat sink, into the chamber, then out the exit tube.

I mainly want to know if this will help cool the heated area faster by drawing more heat from causing turbulence in the chamber, as apposed to the exit tube being flush with the end of the chamber.

Thank you all I hope I made it clear what I'm asking.
You asked if there was an equation used to determine turbulence in flow and there is one. You might want to look into the Reynolds Number. https://www.engineeringtoolbox.com/reynolds-number-d_237.html
 
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
Back
Top