Is the Fourier Heat Equation's Speed of Propagation Infinite?

  • Thread starter Thread starter matematikawan
  • Start date Start date
  • Tags Tags
    Heat Heat equation
matematikawan
Messages
336
Reaction score
0
One critic of the Fourier heat equation

\frac{\partial T}{\partial t}=k\nabla^2 T

that I recently came across is that it gives rise to infinite speed of heat propagation.

I understand that the speed cannot be infinite because it contradict special relativity that no speed should be greater than the speed of light.

My question is how do they prove that the heat equation gives rise to infinite speed.

The paper also talk about Cattaneo's equation. Does anyone has any idea how to show that the propagation speed is infinite?
 
Last edited:
Physics news on Phys.org
I wondered about that as well.

Looking at the fundamental solution for the heat equation you will note that the value of this function is greater than zero for all x and for all t greater than zero.

This means that a rod of infinite length that has had one unit of heat added at a tiny spot for a brief instant of time has had that heat signal travel the entire length of the rod instantaneously.

This of course is paradoxical and few authors spend time explaining. One place where there is a brief explanation occurs in Widder’s book “The Heat Equation”. He explains that what the fundamental solution gives is a mathematical idealization.

Again looking at the graph of the fundamental solution you will not how quickly it decays towards zero.

Obviously in the real world, the heat cannot flow an infinite distance instantaneously.
 
Thanks starzero for that explanation. I will look into this further. Our university library has a copy of Widder's heat equation.

The paper: International Journal of Heat and Mass Transfer 51 (2008) 6024–6031
gives eight reasons why the Fourier’s law of heat conduction need to be modified.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top