Cross product of complex vectors

AI Thread Summary
The discussion centers on the computation of the cross product of complex vectors, specifically whether it follows the same rules as with real vectors. The participants explore the standard definition of the cross product and question how complex components affect the outcome. There is uncertainty regarding the interpretation of unit vectors in the context of complex numbers. The conversation highlights a lack of clear answers in existing literature, suggesting that this topic requires further exploration. Overall, the cross product of complex vectors remains an ambiguous area in mathematics.
GabDX
Messages
11
Reaction score
0
How is computed the cross product of complex vectors?

Let ##\mathbf{a}## and ##\mathbf{b}## be two vectors, each having complex components.
$$\mathbf{a} = a_x \mathbf{\hat{x}} + a_y \mathbf{\hat{y}} + a_z \mathbf{\hat{z}}$$
$$\mathbf{b} = b_x \mathbf{\hat{x}} + b_y \mathbf{\hat{y}} + b_z \mathbf{\hat{z}}$$
For example, the ##x## component of ##\mathbf{a}## could be ##a_x=3+4i##.

I know that the dot product of ##\mathbf{a}## and ##\mathbf{b}## is
$$\mathbf{a} \cdot \mathbf{b} = a_x b_x^* + a_y b_y^* + a_z b_z^*$$
where ##^*## denotes the complex conjugate. Is there some similar trick that should be done with the cross product of complex vectors or is it the same as with real vectors? In other words, is the cross product given by
$$\mathbf{a}\times\mathbf{b} = (a_y b_z - a_z b_y)\mathbf{\hat{x}}
+ (a_z b_x - a_x b_z)\mathbf{\hat{y}}
+ (a_x b_y - a_y b_x)\mathbf{\hat{z}}$$
or is it something different?
 
Mathematics news on Phys.org
In such a vector definition, it is not clear what the unit vectors x-cap, y-cap, and z-cap would represent.

In standard complex variables, a complex function f(z) represents a mapping from the complex x,y plane to another complex u,v plane, in my understanding. Thus f(z) = f(x+iy) = u + iv.
 
This question has been raised before. Google "cross product complex vectors".
 
Raised but not answered!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top