Crystallographic planes and square pyramids

  • Thread starter Thread starter comicnabster
  • Start date Start date
  • Tags Tags
    Planes Square
comicnabster
Messages
10
Reaction score
0

Homework Statement



In materials science right now we are learning about miller indices and crystallographic directions, including planes.

What is the aspect ratio (height/width) of an AFM (atomic force microscope) silicon tip in the shape of a square pyramid where each face of the pyramid is a (111) silicon plane? The silicon tip is etched out of a [100] silicon wafer. The questions says that for a [100] wafer the [100] direction points normal to the surface.

Homework Equations



The book doesn't give any actual equations, only the miller indices definitions, which match what is given on http://en.wikipedia.org/wiki/Miller_index Basically each digit within the brackets represents one of three directions the plane takes, but not the actual value.

Silicon has a diamond crystal structure that is actually two FCC crystal structures offset along the vector (a/4, a/4, a/4) where a represents the lattice constant.

The Attempt at a Solution



I don't have a good grasp of the crystallographic direction material, unfortunately.

I think the tip of the pyramid relative to the center of the base can be expressed by the miller indices [100] in terms of vector notation. After that it would be a matter of relating the [100] vector to the (111) planes with the Pythagorean theorem.

Would I interpret the (111) plane as having a height of 1 in the z direction and the base having length 1 for both the x and y direction? Then the height would be 1/(sqrt2) (read it as 1 over root 2). But then it doesn't seem to connect with the [100] normal vector, which confuses me.

P.S. I have also derived that in silicon's crystal structure the atomic radius and lattice constant can be related by the equation r = (a(3)^0.5)/8 (read it as "a root 3 over 8"), but I don't get how this is relevant to the question, however the information was provided so I think it relates somehow.
 
Physics news on Phys.org
Never mind, solved.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top