MHB What Is the Cubic Polynomial f(x) When 16a + 24b = 9?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
AI Thread Summary
The discussion revolves around determining the cubic polynomial f(x) = x^3 - (3/2)x^2 + ax + b, with real roots constrained to the interval (0, 1). Participants are tasked with proving that 16a + 24b ≤ 9 and finding the specific function when equality is achieved. The problem invites alternative approaches to reach the solution, indicating a collaborative problem-solving environment. The emphasis is on mathematical proofs and exploring the implications of the polynomial's coefficients. Ultimately, the goal is to establish the conditions under which the polynomial meets the specified criteria.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.
 
Mathematics news on Phys.org
anemone said:
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.

For ease of notation I will use $A$ as $a$ and $B$ as $b$.

$$(x-a)(x-b)(x-c)=x^3-(a+b+c)x^2+(ab+ac+bc)x-abc$$
$$\Rightarrow A=ab+ac+bc,B=-abc,a+b+c=\dfrac32$$

$$(a+b+c)^2=a^2+b^2+c^2+2A=\dfrac94\Rightarrow a^2+b^2+c^2=\dfrac94-2A\quad(1)$$

$$(a-b)^2\ge0$$

$$a^2+b^2\ge2ab$$

Similarily,

$$a^2+c^2\ge2ac$$

$$b^2+c^2\ge2bc$$

Adding and simplifying gives

$$a^2+b^2+c^2\ge A$$

From $(1)$:

$$\dfrac94-2A\ge A$$

$$\dfrac34\ge A\quad(3)$$

From the AM-GM inequality:

$$\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow-\dfrac18\le B\quad(4)$$

From $(3)$ and $(4)$

$$12\ge16A$$

$$3\ge-24B$$

$\Rightarrow9\ge16A+24B$ with equality when $a=b=c=\dfrac12$.

The corresponding function for $f$ is $f(x)=\left(x-\dfrac12\right)^3$.
 
Last edited:
greg1313 said:
For ease of notation I will use $A$ as $a$ and $B$ as $b$.

$$(x-a)(x-b)(x-c)=x^3-\dfrac32x^2+(ab+ac+bc)x-abc$$
$$\Rightarrow A=ab+ac+bc,B=-abc$$

$$(a+b+c)^2=a^2+b^2+c^2+2A=\dfrac94\Rightarrow a^2+b^2+c^2=\dfrac94-2A\quad(1)$$

$$(a-b)^2\ge0$$

$$a^2+b^2\ge2ab$$

Similarily,

$$a^2+c^2\ge2ac$$

$$b^2+c^2\ge2bc$$

Adding and simplifying gives

$$a^2+b^2+c^2\ge A$$

From $(1)$:

$$\dfrac94-2A\ge A$$

$$\dfrac34\ge A\quad(3)$$

From the AM-GM inequality:

$$\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow-\dfrac18\le B\quad(4)$$

From $(3)$ and $(4)$

$$12\ge16A$$

$$3\ge-24B$$

$\Rightarrow9\ge16A+24B$ with equality when $a=b=c=\dfrac12$.

The corresponding function for $f$ is $f(x)=\left(x-\dfrac12\right)^3$.

Awesome, greg1313! And thanks for participating!(Cool)

This problem can still be solved using another route, and I welcome those who are interested to take a stab at it!
 
Hint:

Schur's inequality.
 
anemone said:
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.

Solution of other:

Let the three roots be $p,\,q$ and $r$. By Schur's inequality, we have:

$(p+q+r)^3+9pqr\ge 4(p+q+r)(pq+qr+rp)$

which is just

$\left(\dfrac{3}{2}\right)^3+9(-b)\ge 4\left(\dfrac{3}{2}\right)\left(a\right)$

and upon simplification we get:

$16a+24b\le 9$

Equality holds when $p=q=r$, i.e. $f(x)=\left(x-\dfrac{1}{2}\right)^3$.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top