yungman
- 5,741
- 294
Let ##v(x,y)## be function of (x,y) and not z.
\nabla v=\hat x \frac{\partial v}{\partial x}+\hat y \frac{\partial v}{\partial y}
\nabla \times \nabla v=\left|\begin{array} \;\hat x & \hat y & \hat z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & 0 \end{array}\right|=\hat x\left(-\frac{\partial^2 v}{\partial y\partial z}\right)-\hat y\left(-\frac{\partial^2 v}{\partial x\partial z}\right) +\hat z\left(\frac{\partial^2 v}{\partial y\partial x}-\frac{\partial^2 v}{\partial x\partial y} \right) =0
What did I do wrong?
\nabla v=\hat x \frac{\partial v}{\partial x}+\hat y \frac{\partial v}{\partial y}
\nabla \times \nabla v=\left|\begin{array} \;\hat x & \hat y & \hat z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & 0 \end{array}\right|=\hat x\left(-\frac{\partial^2 v}{\partial y\partial z}\right)-\hat y\left(-\frac{\partial^2 v}{\partial x\partial z}\right) +\hat z\left(\frac{\partial^2 v}{\partial y\partial x}-\frac{\partial^2 v}{\partial x\partial y} \right) =0
What did I do wrong?