Current Surge Capacitor Calculator

AI Thread Summary
The discussion revolves around the challenges of powering a Raspberry Pi Zero W integrated into a Yoda head prank, which currently runs on batteries but is being transitioned to an AC/DC adapter. Users suggest that the rebooting issue when the motor and speaker are activated is likely due to insufficient current from the 2A, 5V adapter. Calculations indicate that a larger power supply or additional capacitance may be necessary to stabilize the voltage during high current draws. Recommendations include using a separate regulator for the motor, implementing a soft-start feature, or considering a higher voltage power source like a LiPo battery. The consensus is that simply adding capacitors may not resolve the underlying power supply issue effectively.
Freddythunder
Messages
48
Reaction score
1
Hello friends...

I'll jump right into the deal here.. I pranked a friend by putting a raspberry pi into a yoda head like the one on his desk. There's an intro video: and the prank itself: if you are intrigued.

Everything in the head runs off 3 AAA batteries. 1 raspberry pi zero w, 1 small amplifier, 1 motor control board & dc motor. I can't tell you how much current it really uses; but I can tell you 3 AAA works well for about 15 to 20 minutes.

Now that the prank has ended I want to run yoda off of an AC/DC adapter instead of the batteries. When building I was able to use a 12V AC/DC adapter (~4 amps I think) through a 5VDC regulator and everything ran fine then. I found a 2A, 5VDC AC/DC adapter and hooked that in place of the batteries. Everything works until you make Yoda talk (uses motor, speaker, pi processor all at once) and the raspberry pi reboots.

I'm thinking that there isn't enough current to keep voltage up and the pi basically powers down and back up again. I don't know much about electric engineering, but a friend at work said to put a capacitor inline with the power but couldn't tell me what size.

I've googled quite a bit to find a calculator to figure out what I may need, but can't find anything. Any ideas? Thanks. Sorry for the long post.
 
Engineering news on Phys.org
Unless the power peaks are very short in duration, a capacitor won't help. You probably need just a bigger power supply.

If you tell us the exact model of raspberry pi you have, we could look up the power requirements.
 
Capacitance = Charge / Voltage; C=Q/V.
Charge = Current * time; Q=I*t.
So; C = I * t / V.

If you need 0.5 amp for 1 second and cannot have the voltage drop by more than 2 volts then you need at least;
C = 0.5 amp * 1 sec / 2 volts = 0.25 farad.

That capacitance must be on the unregulated supply before the voltage regulator.
 
@anorlunda This is a great guide to show approximate current draws of the raspberry pi, but it's way more than that. The motor is pulling the most current, probably then followed by the audio amplifier, then by the h bridge to run the motor in two different directions. A larger power supply would be great but it's pretty hard to find a small one with more than 2A. Maybe I can find an old printer one that has multiple voltages with one being +5... Hmm.

@Baluncore Thank you for the formulas, I will soak those in and put them next to ohm's law in my head. I'm guessing since one AAA battery could produce 1-2 amps, I would need 6 amps (that seems wrong right off the bat), I'd say 5 seconds @ 5 volts... 6 farad - isn't that one of those giant ones you use in car stereo applications? Maybe a cap is not the right way to go...
 
  • Like
Likes Tom.G
Adding more caps is not the right way to go. You should check the power consumption of the motor and also: do some software tweaking to allow some kind of soft-start for the motor.
The high current draw at 0 RPM will just deplete any (sane sized) cap anyway and bring the input voltage below the starting level of the CPU board.

Alternative is to use a 12V 2A PSU and put the motor on a separate regulator. The power stored in a cap grows with U2, so you would have ~ six times of power to start the motor in a 12V cap.

Ui.: it is also a possible solution to put a diode on the power in of the Pi and add caps after the diode. That would keep up the voltage on the module while the motor starts up. But you have to check the undervoltage threshold of the module first.
 
Last edited:
3 AAA won't give 5 V, so you start with voltage under specification, any load and voltage will drop even further, no wonder it reboots (actually I am rather surprised it starts at all).

If memory serves me well Zero W needs a bit over 1 A. I would think about going LiPo and switcher (capable of delivering several amps) route. 2S LiPo gives 8.4 V when freshly charged, can be safely used down to about 6.6 V, so 2S should be enough.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Back
Top