DC Circuits: Why Is Voltage Across Inductor 0 at Steady State?

AI Thread Summary
In a DC steady state, an inductor behaves like a short circuit, resulting in zero voltage across it. According to Ohm's law, with resistance at zero, the voltage must also be zero. As the current through the inductor reaches its maximum or minimum and stops changing, the rate of change of current (di/dt) becomes zero. This leads to a voltage drop of zero across the inductor, confirming that V = L(di/dt) equals zero volts. Understanding these principles clarifies the behavior of inductors in steady-state DC circuits.
dleccord
Messages
10
Reaction score
0
if the inductor is at dc steady state, the inductor would act like a short.

in this case, why would the voltage across the inductor be zero?

thanks in advance.
 
Physics news on Phys.org
According to Ohm's law E=IR if R=0 (a short) then E is also 0.
 
dleccord said:
if the inductor is at dc steady state, the inductor would act like a short.

in this case, why would the voltage across the inductor be zero?

thanks in advance.

A perfect electrical short means there is no electrical resistance. If there is no electrical resistance then there can be no voltage across the short. E=IR or Voltage=Amps times Resistance. As you can see as the resistance decreases so does the voltage.
 
wow thanks, i can't believe i didnt look at ohm's law's simplest.

i was looking for V=Ldi/dt, trying to figure that out but confused myself.

thanks ruko.
 
At t=\infty, the current through the inductor is maximum (for "charging" phase) or minimum (for "discharging" phase) and is no longer changing. Therefore, di/dt=0 amps/sec, so the voltage drop across the inductor is V= L(di/dt) = 0 volts.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top