De Broglie Wavelength: Velocity & Stationary Matter

Harmony
Messages
201
Reaction score
0
1. Since velocity is relative to the reference frame, would the de Broglie Wavelength varies from one observer to another?

2. What will happen if the matter is stationary?
 
Physics news on Phys.org
These are incomplete answers, but maybe they'll inspire better ones:

1. Sure, but QM and relativity don't tend to sit well together.
2. Nothing, there is still a random thermal velocity.
 
Harmony said:
1. Since velocity is relative to the reference frame, would the de Broglie Wavelength varies from one observer to another?
If one would apply the principles of special relativity onto QM, YES !

2. What will happen if the matter is stationary?
Stationary with respect to what frame ? :wink:

marlon
 
Harmony,
Special relativity has been totally implied into QM (Previosity: Schroedinger)
through Dirac's and KELIN-GORDON, for fermions and bosons respectively.
Of course, Cesium, this was the case before Dirac's. But, there are still two problems in QM and also in QFT; a. can't deal with Gravity and b. didn't contain GR effects ... There are differences as introduced to me by Amr Morsi.
Got you ... Morsi:wink:
Marlon, this is a very good question, especially when Dirac's, or even Schroedinger (non-relativistic of course), can be applied to dynamic non-conservative fields.

Thanks to permit me to add another question: What is the meaning of De Broglie Wavelength in the view of the newer probability concept of Probability Density Function?


Schwartz Vandslire.

-----------------------------------------------
Either to do it correctly as required, or to leave it as required.
 
Truth Finder said:
What is the meaning of De Broglie Wavelength in the view of the newer probability concept of Probability Density Function?
The de broglie wavelength is a property of a single particle (corresponding to a single energy eigenstate) while a density function describes a group of particles (ie the corresponding wavefunction is a superposition (or tensor product like a Fock space) of single particle wavefunctions which in themselves can contain multiple energy eigenstates if they are non stationary and thus exhibit a spread in their momentum or "deBroglie wavefunction"). So, no straightforeward relation, IMO.

marlon
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
I understand that the world of interpretations of quantum mechanics is very complex, as experimental data hasn't completely falsified the main deterministic interpretations (such as Everett), vs non-deterministc ones, however, I read in online sources that Objective Collapse theories are being increasingly challenged. Does this mean that deterministic interpretations are more likely to be true? I always understood that the "collapse" or "measurement problem" was how we phrased the fact that...
This post is a spin-off of the original post that discussed Barandes theory, A new realistic stochastic interpretation of Quantum Mechanics, for any details about the interpretation in general PLEASE look up for an answer there. Now I want this post to focus on this pre-print: J. A. Barandes, "New Prospects for a Causally Local Formulation of Quantum Theory", arXiv 2402.16935 (2024) My main concerns are that Barandes thinks this deflates the anti-classical Bell's theorem. In Barandes...
Back
Top