Dealing with complex operation in Quantum mechanics

M. next
Messages
380
Reaction score
0
In proving that for the norm to be preserved, U must be unitary. I ran across this:

Re(λ<ø|ψ>)=Re(λ<Uø|Uψ>)

if λ=i, it says that then it follows that Im(<ø|ψ>)=Im(<Uø|Uψ>), how's this? I know that Re(iz)=-Im(z) in complex, but here the inner product <ø|ψ> is not z, or is it?

If you could point out how this took place, I would be thankful!
 
Physics news on Phys.org
Yes, <ø|ψ> is a complex number, if that's what you're asking - It's not entirely clear to me.
 
  • Like
Likes 1 person
Yes, thanks. I noticed that after I posted this!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top