Defining a Flow: What's the Best Way?

  • Thread starter Thread starter Rasalhague
  • Start date Start date
  • Tags Tags
    Definitions Flow
Rasalhague
Messages
1,383
Reaction score
2
I'm wondering which of the following definitions of a flow is best. Is there one primary, rigorous, general definition of which the others are informal shorthands, or are the differences no more then superficial differences in convention?

(1) Arnold, in Ordinary Differential Equations, defines a (phase) flow1 as a pair (M,{gt}) where M is a set called the phase space, and {gt} the set of all t-advance mappings gt : M --> M. And gt = g(t,_), where g is the evolution function of the dynamical system, as defined by Wikipedia: Dynamical system.

(2) The aftoresaid article, in the section "General definition", gives the name flow2 to functions of the form g(_,x), which it calls "the flow through x".

(3) The same article, in the section "Geometric cases" tells us: "A real dynamical system, real-time dynamical system or flow3 is a tuple (T, M, Φ) with T an open interval in the real numbers R, M a manifold locally diffeomorphic to a Banach space, and Φ a continuous function."

(4) Wikipedia: Flow, defines a flow4 as the evolution function of a global real dynamical system, that is, one for which T = R.

(5) And Scholarpedia: Dynamical systems gives the name flow5 to a global real dynamical system itself.

*

Are the definitions as a tuple, such as Arnold's, rather superfluous? By this I mean, isn't the existence of M and its relationship to the functions g or gt already part of the definition of those functions? Is that why it's okay to define a flow, or indeed a dynamical system in general, as its own evolution function? Or are the defininitions which take this approach shorthand definitions which miss out information necessary for a completely general and rigorous definition of a dynamical system?
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top