Dyadic Cube [tex]C_{k,N} = X \in\ \mathbb{R}^{n} \frac{k_{i}}{2^{N}} \leq x_{i} < \frac{k_{i}+1}{2^{N}} for 1 \leq i \leq n[/tex](adsbygoogle = window.adsbygoogle || []).push({});

Where [tex]k = \pmatrix {

k_{1} \cr

k_{2} \cr

\vdots \cr

k_{i} \cr

} [/tex]

I understand that N is the level of the cubes, but what does k equal?

I'm having trouble visualizing this in my head.

[itex]A \subset \mathbb{R}^{n}[/itex]

[tex] M_{A}(f)= supp_{x \in A}f(x); m_{A}(f) = inf_{x \in A}f(x)[/tex] [tex] U_{N}(f) = \sum M_{c}(f) vol_{n}C [/tex] [tex] L_{N}(f) = \sum m_{c}(f) vol_{n}C [/tex]

I get the general idea, but I can't really see this in my head.

If you take the supp value of a function on a given cube, and multiply it by the volume of you cube, you get volume again??

I can't really get the image straight.

I get that this is just an extension of single variable, so it means that U must equal L which must equal I (integral).

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Definition of Integral in Multiple Variables

Loading...

Similar Threads - Definition Integral Multiple | Date |
---|---|

I Integrating scaled and translated indicator function | Nov 20, 2017 |

B Definite integrals with +ve and -ve values | Jun 10, 2017 |

Definite integration involving multiple angle of sine. | Dec 5, 2013 |

Multiplication in a Definite Integral Equation | Jul 10, 2012 |

Proof of a definite multiple integral relation | Feb 7, 2010 |

**Physics Forums - The Fusion of Science and Community**