MHB What Determines the Degree and Coefficients of Polynomials?

AI Thread Summary
The discussion clarifies the degree and coefficients of polynomials, specifically addressing the numbers 4 and 0. The number 4 is identified as a polynomial with a degree of 0 and a nonzero coefficient of 4. In contrast, the number 0 is also classified as a polynomial, but its degree is considered undefined due to the absence of nonzero terms. The conversation emphasizes that a polynomial must consist of constants and variables with non-negative integer exponents, and highlights the distinction between dividing by a constant versus a variable. Overall, both 4 and 0 qualify as polynomials under these definitions.
mathdad
Messages
1,280
Reaction score
0
Specify the degree and the (nonzero) coefficients of each polynomial.

(A) 4

(B) 0

Solution:

The number 4 can be expressed as 4x^0. Is this correct?
If this is right, then the nonzero coefficient must be 4 itself. Is this right? The degree is 0.

The whole number 0 can be expressed as 0x^0. The degree is 0. What is the nonzero coefficient of 0?

Why is 4 a polynomial?

Why is 0 a polynomial?
 
Mathematics news on Phys.org
(A) The degree of a constant is always 0. Any constant c can be written as cx^0.
(B) The degree of 0 is technically undefined. This is a polynomial but has no nonzero terms (obviously) and therefore has no degree.

These are certainly polynomials! More specifically, monomials, meaning they only have one term. A polynomial is a collection of constants and variables with exponents, but you cannot divide by a variable. Both 4 and 0 are then polynomials, because they do not break this rule.
 
joypav said:
(A) The degree of a constant is always 0. Any constant c can be written as cx^0.
(B) The degree of 0 is technically undefined. This is a polynomial but has no nonzero terms (obviously) and therefore has no degree.

These are certainly polynomials! More specifically, monomials, meaning they only have one term. A polynomial is a collection of constants and variables with exponents, but you cannot divide by a variable. Both 4 and 0 are then polynomials, because they do not break this rule.

You said that we cannot divide a variable. Say, for example, x. Is x/2 not considered x divided by 2?
 
RTCNTC said:
You said that we cannot divide a variable. Say, for example, x. Is x/2 not considered x divided by 2?

Not quite, if I understand what you're asking.

x/2 would be a polynomial. In this case, x is in the numerator. You CAN divide a variable by a constant. That is not an issue.

What I meant was, you CANNOT divide by a variable. Meaning, 2/x would not be a monomial. In this case, you have a variable in the denominator.
 
joypav said:
Not quite, if I understand what you're asking.

x/2 would be a polynomial. In this case, x is in the numerator. You CAN divide a variable by a constant. That is not an issue.

What I meant was, you CANNOT divide by a variable. Meaning, 2/x would not be a monomial. In this case, you have a variable in the denominator.

I get it now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top