Degree of freedom of gravitino

shooride
Messages
34
Reaction score
0
Please tell me how to count the degree of freedom of gravitino on the mass-shell? I read http://arxiv.org/abs/1112.3502, but I can't understand it. How about supervielbein?
 
Physics news on Phys.org
Take a look at Van Proeyen's online notes on SUGRA, or his book with Freedman. There it is really explicitly explained, both of-shell and on-shell :)

The Vielbein's DOF's are easy (of-shell): it's a matrix, so it has D^2 components in D dimensions. Local Lorentz transformations make you subtract 1/2*D*(D-1) components from it, leaving you with 1/2*D*(D+1) components for the metric. Which is the right amount for a symmetric tensor like the metric.
 
haushofer said:
Take a look at Van Proeyen's online notes on SUGRA, or his book with Freedman. There it is really explicitly explained, both of-shell and on-shell :)

The Vielbein's DOF's are easy (of-shell): it's a matrix, so it has D^2 components in D dimensions. Local Lorentz transformations make you subtract 1/2*D*(D-1) components from it, leaving you with 1/2*D*(D+1) components for the metric. Which is the right amount for a symmetric tensor like the metric.

dear haushofer,I want to obtain the DOF of gravitino, but I just found the final answer at Supergravity by Freedman and Van Proeyen..I know gravitino has 2^[d/2](d-1) components in the off-shell formalism (i use local susy gauge invariance)..but I don't understand how to obtain DOF of gravitino in the on-shell formalism? (with E.O.M ##\gamma^\mu\psi_\mu=0## ) The answer is 2^[d/2]/2(d-3). Moreover I find at the book of SUGRA by West witch superveilbein (not vielbein) has 8*8*8 DOF (and general coordinate transformations and super local lorentz transformations subtract 8*8+8*6 components ) in 4-dim, but how to count these DOF?
 
What is it exactly that you don't understand of the treatment of Van Proeyen? He does it very explicitly on-shell, in section 5.1. It's basically a survey of the amount of initial conditions to be specified if you rewrite the EOM in terms of an antisymmetric derivative. :)
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top