MHB Demonstrating that a mapping is injective

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Injective Mapping
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote, Section 10.5 : Exact Sequences - Projective, Injective and Flat Modules.

I am studying Proposition 28 (D&F pages 387 - 388)

In the latter stages of the proof of Proposition 28 we find the following statement (top of page 388):

"In general, $$ Hom_R (R, X) \cong X $$, the isomorphism being given by mapping a homomorphism to its value on the element $$1 \in R $$"

I am having some trouble in demonstrating the isomorphism involved in the relationship $$ Hom_R (R, X) \cong X $$.

To demonstrate the isomorphism I proceeded as follows:

Let $$f, g \in Hom_R (R,X) $$ so $$ f,g : \ R \to X $$

Consider $$ \theta \ : \ Hom_R (R,X) \to X $$

where $$ \theta (f) = f(1_R) $$

To show $$ \theta $$ is a homomorphism we proceed as follows:

$$ \theta (f + g) = (f + g)(1_R) = f(1_R) + g(1_R) $$

$$ = \theta (f) + \theta (g) $$

and

$$ \theta (rf) = (rf) = rf (1_R) = r \theta (f) $$ where $$ r \in R $$

Then I need to show $$ \theta $$ is injective and surjective.

BUT ... I am having problems in demonstrating that $$ \theta $$ is injective ... can someone help me with this task?Note that I suspect one would proceed as follows:

Suppose we have $$ f, g \in Hom_R (R,X) $$ such that:

$$ \theta (f) = f(1_R) $$ and $$ \theta (g) = f(1_R) $$

Now we have, of course, by definition of g, that $$ \theta (g) = g(1_R) $$

So $$ f(1_R) = g(1_R) $$ ... but how do we proceed from here to show that f = g?

Hope someone can help.

Peter
 
Last edited:
Physics news on Phys.org
Suppose $f \in \text{ker }\theta$.

By definition, this means:

$f(1_R) = 0_X$.

Hence, for any $r \in R$, we have:

$f(r) = f(r\cdot1_R) = r\cdot f(1_R) = r\cdot 0_X= 0_X$

which show the kernel consists solely of the 0-map, and is thus injective.

It seems to me surjectivity is more of a problem, we need to prove there IS $f \in \text{Hom}_R(R,X)$ with:

$f(1_R) = x$, for every $x \in X$. I suggest looking at the submodule generated by $x$.
 
Deveno said:
Suppose $f \in \text{ker }\theta$.

By definition, this means:

$f(1_R) = 0_X$.

Hence, for any $r \in R$, we have:

$f(r) = f(r\cdot1_R) = r\cdot f(1_R) = r\cdot 0_X= 0_X$

which show the kernel consists solely of the 0-map, and is thus injective.

It seems to me surjectivity is more of a problem, we need to prove there IS $f \in \text{Hom}_R(R,X)$ with:

$f(1_R) = x$, for every $x \in X$. I suggest looking at the submodule generated by $x$.

Thanks Deveno ...

You are certainly right that proving $$ \theta $$ is surjective is a problem ... I am having problems proving it ... even given your suggestion ...

Can you help?

Peter
 
There is a reason that I suggested the submodule generated by $x$.

Note that if $Y \subseteq X$ is a submodule, then $\text{Hom}_R(R,Y) \subseteq \text{Hom}_R(R,X)$.

The obvious candidate is: $g(r) = r\cdot x$, which maps $R \to \langle x\rangle$.
 
Deveno said:
There is a reason that I suggested the submodule generated by $x$.

Note that if $Y \subseteq X$ is a submodule, then $\text{Hom}_R(R,Y) \subseteq \text{Hom}_R(R,X)$.

The obvious candidate is: $g(r) = r\cdot x$, which maps $R \to \langle x\rangle$.

Thanks Deveno ... Reflecting on your post now ... ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top