ebol
- 6
- 0
Hi!
I have to show that
[L_i,x_j]= i \hbar \varepsilon_{ijk} x_k
but my result is different, I'm definitely making a mistake
ok I wrote
L_i = \varepsilon_{ijk} x_j p_k
then
[L_i,x_l]= \varepsilon_{ijk} ( [x_j p_k , x_l] ) = \varepsilon_{ijk} ( {x_j [p_k , x_l] + [x_j , x_l] p_k } ) = \varepsilon_{ijk} ( {x_j [p_k , x_l] } ) =
= \varepsilon_{ijk} ( {x_j \frac{\hbar}{i} δ_{kl} } ) = \frac{\hbar}{i} \varepsilon_{ijk} {x_j }
can anyone tell me where I'm wrong?
thanks anyway!
I have to show that
[L_i,x_j]= i \hbar \varepsilon_{ijk} x_k
but my result is different, I'm definitely making a mistake

ok I wrote
L_i = \varepsilon_{ijk} x_j p_k
then
[L_i,x_l]= \varepsilon_{ijk} ( [x_j p_k , x_l] ) = \varepsilon_{ijk} ( {x_j [p_k , x_l] + [x_j , x_l] p_k } ) = \varepsilon_{ijk} ( {x_j [p_k , x_l] } ) =
= \varepsilon_{ijk} ( {x_j \frac{\hbar}{i} δ_{kl} } ) = \frac{\hbar}{i} \varepsilon_{ijk} {x_j }
can anyone tell me where I'm wrong?

thanks anyway!
