MHB Derivation of Euler-Lagrange equations w/ Hamilton's equations

Click For Summary
The discussion focuses on deriving the Euler-Lagrange equations using Hamilton's equations and the Hamiltonian's definition in terms of the Lagrangian. The initial attempt involved manipulating the Hamiltonian to express the Lagrangian, but the user encountered a roadblock when deriving the necessary relationships. A key insight shared is that the momentum \( p \) is a function of \( \dot{q} \), which affects the partial derivatives in the calculations. This oversight is crucial for correctly applying Hamilton's equations to arrive at the Euler-Lagrange equations. The user plans to rework their approach with this understanding in mind.
skate_nerd
Messages
174
Reaction score
0
I've got a problem that asks us to derive the Euler-Lagrange equations by only using Hamilton's equations and the definition of the Hamiltonian in terms of the Lagrangian. Here's what I tried:

The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}

Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody
 
Mathematics news on Phys.org
Hi skatenerd,

This is a nice question.

skatenerd said:
I've got a problem that asks us to derive the Euler-Lagrange equations by only using Hamilton's equations and the definition of the Hamiltonian in terms of the Lagrangian. Here's what I tried:

The Hamiltonian is defined as
\begin{align*}
\mathcal{H} = \dot{q}_ip_i - \mathcal{L}
\end{align*}
(where the summation convention is implied), and solving for $\mathcal{L}$, we have
\begin{align*}
\mathcal{L} = \dot{q}_ip_i - \mathcal{H}
\end{align*}
Taking the partial derivative with respect to $\dot{q}_i$ on both sides of the above equation, we have
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} &= \frac{\partial}{\partial\dot{q}_i}\left[\dot{q}_ip_i - \mathcal{H}\right] \\
&= p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
We are given that
\begin{align*}
\frac{\partial\mathcal{L}}{\partial\dot{q}_i} = p_i
\end{align*}
so going back to our definition for the Hamiltonian, we have
\begin{align*}
p_i = p_i - \frac{\partial\mathcal{H}}{\partial\dot{q}_i}
\end{align*}
So we find that
\begin{align*}
\frac{\partial\mathcal{H}}{\partial\dot{q}_i} = 0
\end{align*}

Clearly what I have tried is going nowhere, but the professor gave a hint where he says to start with the definition of the Hamiltonian and invert it to solve for the Lagrangian, which is exactly what I did. I feel like I'm at a bit of a roadblock, so any hints would be appreciated. Thanks everybody

Your attempt was good and was in the right direction. Given your calculation, I imagine you've overlooked the same thing I did when I first encountered the relationship between Hamiltonian and Lagrangian mechanics. To simplify things, I will present things in one generalized coordinate dimension and let you work out how to extend things to the case of several variables (i.e. I won't have any $i$ indices anywhere)

Note that via the Legendre transformation, $p=p(q,\dot{q})$ and so its partial derivative with respect to $\dot{q}$ isn't zero in general. Furthermore, you can use this fact to further expand the partial derivative of the Hamiltonian in your calculation. From here you should be able to apply Hamilton's equations to derive the Euler-Lagrange equations.

Hopefully this can help you make some sense out of things this time around.
 
GJA said:
Hi skatenerd,

This is a nice question.
Your attempt was good and was in the right direction. Given your calculation, I imagine you've overlooked the same thing I did when I first encountered the relationship between Hamiltonian and Lagrangian mechanics. To simplify things, I will present things in one generalized coordinate dimension and let you work out how to extend things to the case of several variables (i.e. I won't have any $i$ indices anywhere)

Note that via the Legendre transformation, $p=p(q,\dot{q})$ and so its partial derivative with respect to $\dot{q}$ isn't zero in general. Furthermore, you can use this fact to further expand the partial derivative of the Hamiltonian in your calculation. From here you should be able to apply Hamilton's equations to derive the Euler-Lagrange equations.

Hopefully this can help you make some sense out of things this time around.

Thanks for the response! I think I see what you mean. When I took the partial derivative with respect to $\dot{q}_i$ I neglected the fact that $p_i$ is a function of $\dot{q}_i$. I'll rework this keeping that in mind.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
518
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
15
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
537
Replies
2
Views
7K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K