Derivation of telegrapher's equations

  • Thread starter Thread starter phygiks
  • Start date Start date
  • Tags Tags
    Derivation
AI Thread Summary
In deriving the telegrapher's equations, there is confusion regarding the arrangement of shunt capacitance and shunt conductance, specifically whether they are in parallel. The discussion highlights that in Pozar's derivations, he assumes they are parallel with the voltages at each end. There is uncertainty about the voltage designation 'u' used for both the capacitor and resistor, raising questions about whether it refers to u(x,t) and how it relates to u(x+dc,t). Clarification is sought on the parallel relationships in the context of integrated circuits. The need for a clearer understanding of these concepts in circuit analysis is emphasized.
phygiks
Messages
16
Reaction score
0
When deriving telegrapher's equations using Kirchhoff current/voltage laws (this equivalent circuit), are the shunt capacitance and shunt conductance in parallel? I assume not, and if not, are they in parallel with the voltages at each corresponding end? I am confused by this; in Pozar's derivations, he assumes the latter when using Kirchhoff current law. I always have trouble determining what is parallel with what, especially in ICs. Can anyone elucidate this for me?
 
Engineering news on Phys.org
Thanks for the derivation although I think my questions are still unanswered. When calculating the losses through the resistor and capacitor, he uses voltage 'u' for both. Is this u(x,t)? Both the capacitor and resistor are at this voltage, so in parallel? What about the voltage at u(x+dc,t)?
 
Last edited:
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top