Derivation of telegrapher's equations

  • Thread starter Thread starter phygiks
  • Start date Start date
  • Tags Tags
    Derivation
AI Thread Summary
In deriving the telegrapher's equations, there is confusion regarding the arrangement of shunt capacitance and shunt conductance, specifically whether they are in parallel. The discussion highlights that in Pozar's derivations, he assumes they are parallel with the voltages at each end. There is uncertainty about the voltage designation 'u' used for both the capacitor and resistor, raising questions about whether it refers to u(x,t) and how it relates to u(x+dc,t). Clarification is sought on the parallel relationships in the context of integrated circuits. The need for a clearer understanding of these concepts in circuit analysis is emphasized.
phygiks
Messages
16
Reaction score
0
When deriving telegrapher's equations using Kirchhoff current/voltage laws (this equivalent circuit), are the shunt capacitance and shunt conductance in parallel? I assume not, and if not, are they in parallel with the voltages at each corresponding end? I am confused by this; in Pozar's derivations, he assumes the latter when using Kirchhoff current law. I always have trouble determining what is parallel with what, especially in ICs. Can anyone elucidate this for me?
 
Engineering news on Phys.org
Thanks for the derivation although I think my questions are still unanswered. When calculating the losses through the resistor and capacitor, he uses voltage 'u' for both. Is this u(x,t)? Both the capacitor and resistor are at this voltage, so in parallel? What about the voltage at u(x+dc,t)?
 
Last edited:
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Back
Top