Derivation of the density of states?

Click For Summary
SUMMARY

The discussion centers on the derivation of the density of states (DOS) in quantum mechanics, specifically within a three-dimensional potential box. The participants derive the total number of quantum states, leading to the expression for the density of states as \( g(E) = \frac{1}{3} \left( \frac{\sqrt{2}}{\pi^2} \right) \left( \frac{m}{\hbar^2} \right)^{3/2} E^{1/2} \). However, this expression differs from the standard textbook result \( g(E) = \left( \frac{\sqrt{2}}{\pi^2} \right) \left( \frac{m}{\hbar^2} \right)^{3/2} E^{1/2} \). The confusion arises from the need to express the density of states correctly by integrating the number of states in a shell and accounting for degeneracy factors.

PREREQUISITES
  • Understanding of Schrödinger equation solutions in quantum mechanics
  • Familiarity with the concept of k-space and quantum states
  • Knowledge of the relationship between energy and wave vector, specifically \( E = \frac{\hbar^2 k^2}{2m} \)
  • Basic grasp of integration techniques in physics
NEXT STEPS
  • Study the derivation of the density of states in quantum mechanics using potential boxes
  • Learn about the implications of degeneracy in quantum states and its effect on density of states calculations
  • Explore the relationship between k-space and energy in more depth, particularly through examples
  • Review the standard textbook derivations of density of states to clarify differences in expressions
USEFUL FOR

Students and professionals in physics, particularly those focusing on quantum mechanics, condensed matter physics, and materials science, will benefit from this discussion. It is especially relevant for those deriving or applying the density of states in their work.

patric44
Messages
308
Reaction score
40
Homework Statement
i have a question concerning the derivation of the density of states
Relevant Equations
g(E) =sqrt(2)/pi^2*(m/hbar^2)^(3/2)*sqrt(E)
hi guys
i have a question about the derivation of the density of states , after solving the Schrödinger equation in the 3d potential box and using the boundary conditions ... etc we came to the conclusion that the quantum state occupy a volume of ##\frac{\pi^{3}}{V_{T}}## in k space
and to count the total number of quantum states its easier to count them in a shell with thickness dk then integrate , so we have :
$$N_{shell} =\frac{\frac{1}{8}4\pi*k^{2}dk}{\frac{\pi^{3}}{V_{T}}}$$
then integrating to get the total number of states give us :
$$N_{T} =\frac{V_{T}}{(2\pi^{2})}\frac{1}{3}k^{3}$$
and translating that expression in terms of the energy
$$N_{T} =\frac{V}{3}(\frac{\sqrt(2)}{\pi^{2}})(\frac{m}{\hbar^{2}})^{3/2}E^{3/2}$$
now dividing by V and E to get the number of quantum states per unit volume and energy give us :
$$g(E) =\frac{1}{3}(\frac{\sqrt(2)}{\pi^{}2})(\frac{m}{\hbar^{2}})^{3/2}E^{1/2}$$
but that expression doesn't look similer to the standerd one in textbooks
$$g(E) =(\frac{\sqrt(2)}{\pi^{}2})(\frac{m}{\hbar^{2}})^{3/2}E^{1/2}$$
what i am doing wrong here ?
 
Physics news on Phys.org
Isn't ##g(E)## rather what you called ##N_{\text{shell}}## expressed in terms of ##E=\hbar^2 k^2/(2m)##? Note that you also have to express also ##\mathrm{d} k## in terms of ##\mathrm{d} E##. With this you get the textbook result, i.e.,
$$g(E)=\frac{\sqrt{m^3 E}}{\sqrt{2} \hbar^3 \pi^2}.$$
 
vanhees71 said:
Isn't ##g(E)## rather what you called ##N_{\text{shell}}## expressed in terms of ##E=\hbar^2 k^2/(2m)##? Note that you also have to express also ##\mathrm{d} k## in terms of ##\mathrm{d} E##. With this you get the textbook result, i.e.,
$$g(E)=\frac{\sqrt{m^3 E}}{\sqrt{2} \hbar^3 \pi^2}.$$
i am a little bit confused here , isn't ##N_{\text{shell}}## is just the number of quantum states in the shell dk and the density of states is defined as the number of quantum sates per unit volume per unit energy , so i cannot just say that ##\frac{N_{\text{shell}}}{V}## is ##g(E) ## since i need to get the total states by integration then divide by ##V## then divide by ##E## ? , replacing k and dk in ##N_{\text{shell}}## expression gives me :
$$ \frac{V}{2}*\frac{\sqrt{2}}{\pi^{2}}*(\frac{m}{\hbar^2})^{3/2}\sqrt{E}dE $$
which is not slimier to the expression i need :
$$g(E) = \frac{\sqrt{2}}{\pi^{2}}*(\frac{m}{\hbar^2})^{3/2}\sqrt{E}$$
am i misinterpreting something here ?
 
What's meant is by definition
$$g(E)=\frac{1}{V_T} \frac{\mathrm{d} N_{\text{shell}}}{\mathrm{d}E}=\frac{1}{V_T} \frac{\mathrm{d} N_{\text{shell}}}{\mathrm{d}k} \frac{\mathrm{d} k}{\mathrm{d} E}.$$
Your ##N_{\text{shell}}## should be rather ##\mathrm{d} N_{\text{shell}}##.

Your additional factor 2 may be from a degeneracy of states, e.g., if you refer to the em. field in a cavity where for (almost all) ##\vec{k}## you have ##g=2## distinct polarization states.
 
  • Informative
Likes   Reactions: patric44
vanhees71 said:
What's meant is by definition
$$g(E)=\frac{1}{V_T} \frac{\mathrm{d} N_{\text{shell}}}{\mathrm{d}E}=\frac{1}{V_T} \frac{\mathrm{d} N_{\text{shell}}}{\mathrm{d}k} \frac{\mathrm{d} k}{\mathrm{d} E}.$$
Your ##N_{\text{shell}}## should be rather ##\mathrm{d} N_{\text{shell}}##.

Your additional factor 2 may be from a degeneracy of states, e.g., if you refer to the em. field in a cavity where for (almost all) ##\vec{k}## you have ##g=2## distinct polarization states.
oh i think i got it now , so the density of states is just the number of energy states per unit volume confined to that specific dk shell , and the extra degeneracy will cancel the extra ##\frac{1}{2}## that i don't want , isn't that right ?
i am sorry but why is it defined that way ? its a bit confusing , isn't it just more intuitive to define the density of states as the total states in the 1/8 sphere per unit volume per unit energy ?!
 
That would give you the average density whereas you want the density for a given ##E##.
 
  • Like
  • Informative
Likes   Reactions: vanhees71 and patric44

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K