I Derivation of the Variance of Autocorrelation

mertcan
Messages
343
Reaction score
6
Hi everyone in this link (https://stats.stackexchange.com/questions/226334/ljung-box-finite-sample-adjustments) I see the variance of autocorrelation related to specific lag is demonstrated in the following: $$ Var(r_k) = \frac {\sum_{t=k+1}^n a_t*a_{t-k}} {\sum_{t=1}^n a_t^2}$$ where ##r_k## is autocorrelation at relevant lag, ##n## is the number of data set and ##a_t## is error. Could help me prove the formula I mentioned above?
 
Last edited:
Physics news on Phys.org
mertcan said:
Hi everyone in this link (https://stats.stackexchange.com/questions/226334/ljung-box-finite-sample-adjustments) I see the variance of autocorrelation related to specific lag is demonstrated in the following: $$ Var(r_k) = \frac {\sum_{t=k+1}^n a_t*a_{t-k}} {\sum_{t=1}^n a_t^2}$$ where ##r_k## is autocorrelation at relevant lag, ##n## is the number of data set and ##a_t## is error. Could help me prove the formula I mentioned above?

Guys sorry for wrong question. Please let me rectify it.
I have seen the following formula whereas $$ r_k = \frac {\sum_{t=k+1}^n a_t*a_{t-k}} {\sum_{t=1}^n a_t^2}$$ $$Var(r_k) = \frac {n-k}{n*(n+2)}$$ where $r_k$ is the autocorrelation at relevant lag, $n$ is the number of points in the data set, and $a_t$ is the error.

I have searched the internet for the proof for variance equation, but I haven't found it. Could anyone help me prove the formula I mentioned above?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top