Derivative as a Limit: Finding dy/dx for y = √(2x+3)

  • Thread starter Thread starter Karol
  • Start date Start date
  • Tags Tags
    Derivative Limit
Karol
Messages
1,380
Reaction score
22

Homework Statement


Use the definition of the derivative to find dy/dx for ##~y=\sqrt{2x+3}##

Homework Equations


Derivative as a limit:
$$y'=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$

The Attempt at a Solution


$$\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x}$$
$$=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2x+3+\Delta x}-\sqrt{2x+3}}{\Delta x}$$
The nominator and denominator tend to 0 but i can't find the limit
 
Physics news on Phys.org
Have you tried making use of the relation ##(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) = a-b##?
Karol said:
$$=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2x+3+\Delta x}-\sqrt{2x+3}}{\Delta x}$$
Check again whether you miss any factor in front of ##\Delta x## in the numerator.
 
Karol said:

Homework Statement


Use the definition of the derivative to find dy/dx for ##~y=\sqrt{2x+3}##

Homework Equations


Derivative as a limit:
$$y'=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$

The Attempt at a Solution


$$\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x}$$
$$=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2x+3+\Delta x}-\sqrt{2x+3}}{\Delta x}$$
The nominator and denominator tend to 0 but i can't find the limit

$$\sqrt{2x+3+2 \Delta x} = \sqrt{2x+3} \sqrt{1 + \frac{2 \Delta x}{2x+3}}.$$
Can you find the behavior of ##\sqrt{1 + h}## or ##\sqrt{1+h} - 1## for small ##h = 2 \Delta x/(2x+3)##?
 
Last edited:
$$\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x} \cdot \frac{\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3}}{\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3}}=\frac{2\Delta x}{\Delta x(\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3})}=\frac{1}{\sqrt{2x+3}}$$
Ray Vickson said:
Can you find the behavior of ##\sqrt{1 + h}## or ##\sqrt{1+h} - 1## for small ##h = 2 \Delta x/(2x+3)##?
$$\lim_{h\rightarrow 0}\sqrt{1+h}=1$$
$$=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2x+3+2\Delta x}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2x+3}-\sqrt{2x+3}}{\Delta x}=\frac{0}{0}$$
 
Last edited:
Karol said:
$$\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2(x+\Delta x)+3}-\sqrt{2x+3}}{\Delta x} \cdot \frac{\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3}}{\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3}}=\frac{2\Delta x}{\Delta x(\sqrt{2(x+\Delta x)+3}+\sqrt{2x+3})}=\frac{1}{\sqrt{2x+3}}$$

$$\lim_{h\rightarrow 0}\sqrt{1+h}=1$$
$$=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{2x+3+2\Delta x}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2x+3}-\sqrt{2x+3}}{\Delta x}=\frac{0}{0}$$

Nope: that answer is of no use. By "behavior" for small ##h## I mean: how does ##\sqrt{1+h}-1## approach 0? Does it go to zero like ##a h^{10}## (##a## = constant)? Does it go to zero like ##b h## (##b## = constant)? Does it go to zero like ##c \sqrt{h}?## For small ##h## you need to get some simple function ##f(h) \to 0## in the numerator, so you can see what the ratio ##f(h)/h## looks like for small but non-zero ##h##.
 
$$\frac{\sqrt{2x+3+2\Delta x}-\sqrt{2x+3}}{\Delta x}=\frac{ \sqrt{2x+3} \sqrt{1 + \frac{2 \Delta x}{2x+3}}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2x+3}\left[ \sqrt{1+\frac{2\Delta x}{2x+3}}-1 \right]}{\Delta x}$$
$$=\frac{\sqrt{2x+3}\left[ \sqrt{1+\frac{2\Delta x}{2x+3}}-1 \right]}{\Delta x} \cdot \frac{ \sqrt{1+\frac{2\Delta x}{2x+3}}+1 }{ \sqrt{1+\frac{2\Delta x}{2x+3}}+1 }$$
$$=\frac{1}{\sqrt{2x+3}}$$
 
Karol said:
$$\frac{\sqrt{2x+3+2\Delta x}-\sqrt{2x+3}}{\Delta x}=\frac{ \sqrt{2x+3} \sqrt{1 + \frac{2 \Delta x}{2x+3}}-\sqrt{2x+3}}{\Delta x}=\frac{\sqrt{2x+3}\left[ \sqrt{1+\frac{2\Delta x}{2x+3}}-1 \right]}{\Delta x}$$
$$=\frac{\sqrt{2x+3}\left[ \sqrt{1+\frac{2\Delta x}{2x+3}}-1 \right]}{\Delta x} \cdot \frac{ \sqrt{1+\frac{2\Delta x}{2x+3}}+1 }{ \sqrt{1+\frac{2\Delta x}{2x+3}}+1 }$$
$$=\frac{1}{\sqrt{2x+3}}$$
Alternatively:
$$\sqrt{1+h}-1 = \frac{(\sqrt{h+1}-1)(\sqrt{h+1}+1)}{\sqrt{h+1}+1} = \frac{(h+1)-1}{\sqrt{h+1}+1} \approx \frac{h}{2}$$
for small ##|h|##. Thus,
$$f(x+\Delta x)-f(x) \approx \sqrt{2x+3}\frac{1}{2 (2x+3)} 2 \Delta x = \frac{\Delta x}{\sqrt{2x+3}}$$
so ##f'(x) = 1/\sqrt{2x+3}.##
 
Thank you Ray
 
Back
Top