MHB Derivative: Simplifying an Equation

  • Thread starter Thread starter needOfHelpCMath
  • Start date Start date
  • Tags Tags
    Derivative
needOfHelpCMath
Messages
70
Reaction score
0
How does this equation:

$$\dfrac{12x\sqrt{2x^3+3x+2}-\frac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}$$

becomes this equation

$${12x^4+36x^2+48x-9}frac{4\left(2x^3+3x+2\right)^\frac{3}{2}}$$
 
Last edited:
Physics news on Phys.org
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$
 
MarkFL said:
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$

ahh okay i see it now cancels out then foil for the left side then. thank you
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Back
Top