TommG
- 28
- 0
Need to find derivative using logarithmic differentiation
y = \sqrt{x(x+1)}
My attempt
ln y = ln \sqrt{x(x+1)}
ln y = \frac{1}{2}ln x(x+1)
ln y = \frac{1}{2}ln x + ln(x+1)
\frac{1}{y}= (\frac{1}{2}) \frac{1}{x} + \frac{1}{x+1}
\frac{1}{y}= \frac{1}{2x} + \frac{1}{x+1}
\frac{dy}{dx}= y(\frac{1}{2x} + \frac{1}{x+1})
\frac{dy}{dx}= \sqrt{x(x+1)}(\frac{1}{2x} + \frac{1}{x+1})
\frac{dy}{dx}= \frac{\sqrt{x(x+1)}}{2x} + \frac{\sqrt{x(x+1)}}{x+1}
answer in book \frac{2x+1}{2\sqrt{x(x+1))}}
y = \sqrt{x(x+1)}
My attempt
ln y = ln \sqrt{x(x+1)}
ln y = \frac{1}{2}ln x(x+1)
ln y = \frac{1}{2}ln x + ln(x+1)
\frac{1}{y}= (\frac{1}{2}) \frac{1}{x} + \frac{1}{x+1}
\frac{1}{y}= \frac{1}{2x} + \frac{1}{x+1}
\frac{dy}{dx}= y(\frac{1}{2x} + \frac{1}{x+1})
\frac{dy}{dx}= \sqrt{x(x+1)}(\frac{1}{2x} + \frac{1}{x+1})
\frac{dy}{dx}= \frac{\sqrt{x(x+1)}}{2x} + \frac{\sqrt{x(x+1)}}{x+1}
answer in book \frac{2x+1}{2\sqrt{x(x+1))}}