Deriving Descriptions of Conic Sections from Fundamental Definition

CarlisleLes
Messages
3
Reaction score
0
Everyone knows by now that a conic section is the figure formed when a plane intersects a right circular cone. Most everyone also knows that there are many different ways to describe a conic, geometrically and algebraically. What one seldom sees is the derivation of those descriptions from the fundamental definition. Using Dandelin Spheres it is easy to accomplish this for an ellipse. What I have never seen is a proof, based on the fundamental definition, of the equivalence of the ratio of the distances of a point on the conic to the focus and to the directrix, or even a definition of the directrix itself. Can anyone supply or direct me to such information? Thanks.
 
Mathematics news on Phys.org
I have read that a dozen times. It doesn't explain the directrix derivation - just says it's possible to do so.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top