PFStudent
- 169
- 0
Hey,
How do you derive the equations of the parabola from the general equation of a Conic Section?
General Equation of a Conic Section,
<br /> {{{A}{{x}^{2}}}+{{B}{x}{y}}+{{C}{{y}^{2}}}+{{D}{x}}+{{E}{y}}+{F}} = {0}<br />
Where (for a parabola),
<br /> {{\{}A,B,C,D,E,F{\}}}{{\,}{\,}{\,}}{\in}{{\,}{\,}{\,}}{\mathbb{R}}<br />
<br /> {{\{}A, C{\}}}{{\,}{\,}{\,}}{\neq}{{\,}{\,}{\,}}{0}<br />
<br /> {{{B}^{2}}-{{4}{A}{C}}} = {0}<br />
From the general equation of a Conic Section,
<br /> {{{A}{{x}^{2}}}+{{B}{x}{y}}+{{C}{{y}^{2}}}+{{D}{x}}+{{E}{y}}+{F}} = {0}<br />
How do I derive the following formulas for a parabola:
General Form for a Parabola,
<br /> {{{{\left(}{{{H}{x}}+{{I}{y}}}{\right)}}^{2}}+{{J}{x}}+{{K}{y}}+{L}} = {0}<br />
Where,
<br /> {{{I}^{2}}-{{4}{H}{J}}} = {0}<br />
Analytic Geometry Equations,
Vertical Axis of Symmetry
<br /> {{{\left(}x-h{\right)}}^{2}} = {{{4}{p}}{{{\left(}y-k}{\right)}}}<br />
<br /> {y} = {{{a}{{x}^{2}}}+{{b}{x}}+{c}}<br />
Horiztonal Axis of Symmetry
<br /> {{{\left(}y-k{\right)}}^{2}} = {{{4}{p}}{{{\left(}x-h{\right)}}}}<br />
<br /> {x} = {{{d}{{y}^{2}}}+{{e}{y}}+{f}}<br />
I read that every parabola is a combination of transformations of the parabola, {{y}={{x}^{2}}}; but I'm not quite sure how that helps.
Thanks,
-PFStudent
Homework Statement
How do you derive the equations of the parabola from the general equation of a Conic Section?
Homework Equations
General Equation of a Conic Section,
<br /> {{{A}{{x}^{2}}}+{{B}{x}{y}}+{{C}{{y}^{2}}}+{{D}{x}}+{{E}{y}}+{F}} = {0}<br />
Where (for a parabola),
<br /> {{\{}A,B,C,D,E,F{\}}}{{\,}{\,}{\,}}{\in}{{\,}{\,}{\,}}{\mathbb{R}}<br />
<br /> {{\{}A, C{\}}}{{\,}{\,}{\,}}{\neq}{{\,}{\,}{\,}}{0}<br />
<br /> {{{B}^{2}}-{{4}{A}{C}}} = {0}<br />
The Attempt at a Solution
From the general equation of a Conic Section,
<br /> {{{A}{{x}^{2}}}+{{B}{x}{y}}+{{C}{{y}^{2}}}+{{D}{x}}+{{E}{y}}+{F}} = {0}<br />
How do I derive the following formulas for a parabola:
General Form for a Parabola,
<br /> {{{{\left(}{{{H}{x}}+{{I}{y}}}{\right)}}^{2}}+{{J}{x}}+{{K}{y}}+{L}} = {0}<br />
Where,
<br /> {{{I}^{2}}-{{4}{H}{J}}} = {0}<br />
Analytic Geometry Equations,
Vertical Axis of Symmetry
<br /> {{{\left(}x-h{\right)}}^{2}} = {{{4}{p}}{{{\left(}y-k}{\right)}}}<br />
<br /> {y} = {{{a}{{x}^{2}}}+{{b}{x}}+{c}}<br />
Horiztonal Axis of Symmetry
<br /> {{{\left(}y-k{\right)}}^{2}} = {{{4}{p}}{{{\left(}x-h{\right)}}}}<br />
<br /> {x} = {{{d}{{y}^{2}}}+{{e}{y}}+{f}}<br />
I read that every parabola is a combination of transformations of the parabola, {{y}={{x}^{2}}}; but I'm not quite sure how that helps.
Thanks,
-PFStudent
Last edited: