Deriving Jeans' Result from Magnetic Vector Potential

noospace
Messages
69
Reaction score
0
I'm trying to get from the magnetic vector potential

\vec{A}(\vec{x},t) = \frac{1}{\sqrt{\mathcal{V}}}\sum_{\vec{k},\alpha=1,2}(c_{\vec{k}\alpha}(t) \vec{u}_{\vec{k}\alpha}(\vec{x}) + c.c.)

where
c_{\vec{k}\alpha}(t) = c_{\vec{k}\alpha}(0) e^{-i\omega_{\vec{k}\alpha}t}
\vec{u}_{\vec{k}\alpha}(t) = \vec{u}_{\vec{k}\alpha}(0) e^{i \vec{k} \cdot \vec{x}}
c.c. = complex conjugate.

to Jeans' result

H := \frac{1}{2}\int d^3\vec{x} (E^2 + B^2) = \sum_{k,\alpha}\left(\frac{\omega_{k\alpha}}{c}\right)^2 2c_{\vec{k}\alpha}^\ast c_{\vec{k}\alpha}.

The first question I have is why we add the complex conjugate term at all. In classical electrodynamics, I'm used to dealing with the complex fields?

Tod derive the result, my approach was to define the complex vector potential

\widetilde{\vec{A}}(\vec{x},t) = \frac{1}{\sqrt{\mathcal{V}}}\sum_{\vec{k},\alpha=1,2}c_{\vec{k}\alpha}(t) \vec{u}_{\vec{k}\alpha}(\vec{x})

and use the relation

H = \frac{1}{2}\int d^3\vec{x} \frac{1}{2} (\Re[\widetilde{\vec{E}}\cdot \widetilde{\vec{E}}^\ast]+\Re[\widetilde{\vec{B}}\cdot \widetilde{\vec{B}}^\ast])

where \widetilde{\vec{E}} = - \frac{1}{c}\frac{\partial \widetilde{\vec{A}}}{\partial t}, \;\widetilde{\vec{B}} = \nabla \times \widetilde{\vec{A}}.

The first term is easy to deal with and gives (after using the normalization \frac{1}{\mathcal{V}}\int d^3\vec{x} \vec{u}_{\vec{k}\alpha}\cdot\vec{u}_{\vec{k'}\alpha'}^\ast = \delta_{\vec{k}\vec{k}'}\delta_{\alpha\alpha'}):

\frac{1}{4}\int d^3 \vec{x}\Re[\widetilde{\vec{E}}\cdot \widetilde{\vec{E}}^\ast] = \frac{1}{4}\sum_{k,\alpha}\left(\frac{\omega_{k\alpha}}{c}\right)^2 c_{\vec{k}\alpha}^\ast c_{\vec{k}\alpha}

The second term is a bit more problematic. Using the identity

(\vec{k} \times \vec{u})\cdot(\vec{k}' \times \vec{u}') = \vec{k} \cdot\vec{k}' \vec{u} \cdot\vec{u}' - \vec{k} \cdot{u}' \vec{k}' \cdot\vec{u}

I get

\widetilde{\vec{B}} = \nabla \times \widetilde{\vec{A}} = \frac{1}{\sqrt{V}}\sum_{\vec{k},\alpha} i c_{\vec{k}\alpha} \vec{k} \times \vec{u}_{\vec{k}\alpha}

so

\frac{1}{2}\int d^3\vec{x} \frac{1}{2}\Re[\widetilde{\vec{B}}\cdot \widetilde{\vec{B}}^\ast]

= \frac{1}{4}\sum_{\vec{k},\alpha=1,2}\left(\frac{\omega_{\vec{k}\alpha}}{c}\right)^2 c_{\vec{k}\alpha}^\ast c_{\vec{k}\alpha} - \frac{1}{4}\frac{1}{V}\sum_{\vec{k},\vec{k}',\alpha,\alpha'}\int d^3 \vec{x} c^\ast_{\vec{k}'\alpha'}c_{\vec{k}\alpha} (\vec{k}\cdot \vec{u}^\ast_{\vec{k}'\alpha'})(\vec{k'}\cdot \vec{u}_{\vec{k}\alpha})

where I have used the normalization condition to evaluate the first term. I'm stuck on how to evaluate this last integral. I know that I have to use the Gauge condition that \vec{k} \cdot \vec{u}_{\vec{k}\alpha} = 0 but I'm not sure how to incorporate it.

Any help would be greatly appreciated.
 
Last edited:
Physics news on Phys.org
I suppose what I want to show is that the term

\sum_{\vec{k},\vec{k}',\alpha,\alpha'}\int d^3 \vec{x} c^\ast_{\vec{k}'\alpha'}c_{\vec{k}\alpha} (\vec{k}\cdot \vec{u}^\ast_{\vec{k}'\alpha'})(\vec{k'}\cdot \vec{u}_{\vec{k}\alpha})

vanihses. For then,

\frac{1}{2}\int d^3 \vec{x}\frac{1}{2}\Re[\widetilde{\vec{E}}\cdot\widetilde{\vec{E}}^\ast + \widetilde{\vec{B}}\cdot\widetilde{\vec{B}}^\ast] = \frac{1}{2}\sum_{\vec{k},\alpha}\left(\frac{\omega_{\vec{k}\alpha}}{c}\right)^2 c^\ast_{\vec{k}\alpha}c_{\vec{k}\alpha}

which is uncannily similar to what I set out to show. I know \vec{k} \cdot\vec{u}_{\vec{k}\alpha} so I can reduce the sum to a sum over \sum_{\vec{k} \neq \vec{k}',\alpha,\alpha}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top