yungman
- 5,741
- 294
V=\frac 1 {4\pi\epsilon_0}\int \frac {\rho(\vec r\;')}{\eta} \;d\;\tau'\;\hbox{ where }\; \vec{\eta} = \vec r - \vec r\;'
\vec r\; is the position vector of the field point and \;\vec r\;'\; is the position vector of the source point.
Using multiple expansion, the quadrapole term of potential
V_{QUAD} = \frac 1 {4\pi\epsilon_0} \frac 1 {2r^3}\int(r\;')^n(3\;cos^2\theta'-1)\rho(\vec r\;')d\tau'
The book go on to derive V_{QUAD} into coordinate free equation and I am lost. Please explain to me how the steps work:
The book claimed
V_{QUAD}= \frac 1 {4\pi\epsilon_0} \frac 1 {2\; r^3} \sum ^{3}_{i,j=1}\left [ \hat r_i \hat r_j \int[3r'_i r'_j -(r')^2\delta_{ij}]\rho(\vec r\;')d\;\tau'\right ]\;=\;\frac 1 {4\pi\epsilon_0} \frac 1 {2\; r^3} \left [ 3 \sum ^{3}_{i=1} \hat r_i r'_i \sum^3_{j=1} \sum^3_{j=1} \;=\; (r')^2\sum_{ij}\hat r_i\hat r_j \delta_{ij}\right]\rho(\vec r') \;d \;\tau'
\hbox{ Where }\; \delta _{ij} = \; \begin{array}{cc} 1 & i=j \\ 0 & i \neq j \end{array}
\sum ^{3}_{i=1} \hat r_i r'_i =\hat r \cdot \vec r\;' = r'cos\theta' = \sum ^{3}_{j=1} \hat r_j r'_j \;\hbox{ and }\;\sum_{i,j} \hat r_i \hat r_j \delta_{ij} = \sum \hat r_j \hat r_j = \hat r \cdot \hat r =1
Can anyone explain:
\sum ^{3}_{i=1} \hat r_i r'_i =\hat r \cdot \vec r\;' = r'cos\theta' = \sum ^{3}_{j=1} \hat r_j r'_j
and
\sum \hat r_j \hat r_j = \hat r \cdot \hat r =1
\vec r\; is the position vector of the field point and \;\vec r\;'\; is the position vector of the source point.
Using multiple expansion, the quadrapole term of potential
V_{QUAD} = \frac 1 {4\pi\epsilon_0} \frac 1 {2r^3}\int(r\;')^n(3\;cos^2\theta'-1)\rho(\vec r\;')d\tau'
The book go on to derive V_{QUAD} into coordinate free equation and I am lost. Please explain to me how the steps work:
The book claimed
V_{QUAD}= \frac 1 {4\pi\epsilon_0} \frac 1 {2\; r^3} \sum ^{3}_{i,j=1}\left [ \hat r_i \hat r_j \int[3r'_i r'_j -(r')^2\delta_{ij}]\rho(\vec r\;')d\;\tau'\right ]\;=\;\frac 1 {4\pi\epsilon_0} \frac 1 {2\; r^3} \left [ 3 \sum ^{3}_{i=1} \hat r_i r'_i \sum^3_{j=1} \sum^3_{j=1} \;=\; (r')^2\sum_{ij}\hat r_i\hat r_j \delta_{ij}\right]\rho(\vec r') \;d \;\tau'
\hbox{ Where }\; \delta _{ij} = \; \begin{array}{cc} 1 & i=j \\ 0 & i \neq j \end{array}
\sum ^{3}_{i=1} \hat r_i r'_i =\hat r \cdot \vec r\;' = r'cos\theta' = \sum ^{3}_{j=1} \hat r_j r'_j \;\hbox{ and }\;\sum_{i,j} \hat r_i \hat r_j \delta_{ij} = \sum \hat r_j \hat r_j = \hat r \cdot \hat r =1
Can anyone explain:
\sum ^{3}_{i=1} \hat r_i r'_i =\hat r \cdot \vec r\;' = r'cos\theta' = \sum ^{3}_{j=1} \hat r_j r'_j
and
\sum \hat r_j \hat r_j = \hat r \cdot \hat r =1
Last edited: