Chandrasekhar limit...
According to Chandrasekhar's original paper (ref. 1 pg. 116 eq. 5), the maximum mass of a neutron star:
\left( \frac{G M_c}{M'} \right)^2 = \frac{(4 K)^3}{4 \pi G} \; \; \; \; \; K = 3.619 \cdot 10^{14} \; \frac{\text{N}}{\text{m}^2} - Adiabatic constant
M_c = 1.882 \cdot 10^{33} \; \text{g}
M_c = .91 M_{\odot}
However, Chandrasekhar's original paper is missing a key for M', which is located in (1 A. S. Eddington, Internal Constitution of Stars, p. 83, eq. (57.3.)), is identified by myself as Planck's mass M' = m_p, also note that this paper does not state all the SI units!
Therefore the modern equation translation becomes:
\boxed{M_c = \frac{4}{G^2} \sqrt{ \frac{ \hbar c K^3 }{\pi} } = .311 M_{\odot}}
According to Chandrasekhar's paper (ref. 2, pg. 462 eq. 36):
M_c = \frac{2.015 \cdot 4}{\pi^{\frac{1}{2}}} \left( \frac{K_2}{G} \right) = .92 M_{\odot} \; \; \; \; \; K_2 = \frac{h c}{8 (\mu_e m_H)^{\frac{4}{3}}} \left( \frac{3}{\pi} \right)^{\frac{1}{3}} = 3.619 \cdot 10^{14} \; \frac{\text{N}}{\text{m}^2}
According to Chandrasekhar's next paper (ref. 3, pg. 213 eq. 58):
M_c = 4 \pi \left( \frac{2 A_2}{\pi G} \right)^{\frac{3}{2}} \frac{1}{B^2} \omega_3^0 = \frac{5.728}{\mu} M_{\odot} - (ref. 3, pg. 214 eq. 63)
A_2 = \frac{\pi m_e^4 c^5}{3 h^3} \; \; \; \; \; B = \frac{8 \pi m_e^3 c^3 \mu H}{3 h^3} - (ref 3 pg. 209 eq. 5)
H \; \; \; \mu - Hydrogen mass and molecular weight
According to Chandrasekhar's next paper (ref. 4, pg. 150 eq. 43):
M_c = 4 \pi \left( \frac{K_2}{\pi G} \right) (2.018) = 0.197 \left( \frac{h c}{G} \right)^{\frac{3}{2}} \frac{1}{\mu_e H}^2 = \frac{5.76}{\mu_e^2} M_{\odot}
According to Wikipedia, the maximum mass of a neutron star:
M_c = \frac{\omega_3^0 \sqrt{3\pi}}{2}\left ( \frac{\hbar c}{G}\right )^{3/2}\frac{1}{(\mu_e m_H)^2} \; \; \; \; \; \omega_3^0 = 2.018236 - Lane-Emden constant
M_c = 1.43 \left( \frac{2}{\mu_e} \right)^2 M_{\odot}
However, Wikipedia does not provide any proof for the constant \omega_3^0 derived from the solution to the Lane-Emden equation.
[/Color]
Reference:
http://www.ias.ac.in/jarch/jaa/15/115-116.pdf"
http://articles.adsabs.harvard.edu//full/1931MNRAS..91..456C/0000462.000.html"
http://articles.adsabs.harvard.edu//full/1935MNRAS..95..207C/0000213.000.html"
http://nobelprize.org/nobel_prizes/physics/laureates/1983/chandrasekhar-lecture.pdf"
http://en.wikipedia.org/wiki/Chandrasekhar_limit"