Deriving the Limit Definition of |x| Using Symbolic Methods

  • Thread starter Thread starter Orion1
  • Start date Start date
  • Tags Tags
    Absolute Limits
Orion1
Messages
961
Reaction score
3


Is this the correct symbolic method to differentiate this formula using the limit definition?

f(x) = x|x|

f'(x) = \lim_{h \rightarrow 0} \frac{(x + h)|(x + h)| - x|x|}{h}

f'(x) = \lim_{h \rightarrow 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \rightarrow 0} \frac{x^2 + 2hx + h^2 - x^2}{h} = \lim_{h \rightarrow 0} \frac{2hx + h^2}{h} = \lim_{h \rightarrow 0} 2x + h
\boxed{f'(x) = 2|x|}

[/Color]
 
Last edited:
Physics news on Phys.org
3 cases, x>0, x<0 and x=0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top