Orion1
- 961
- 3
Is this the correct symbolic method to differentiate this formula using the limit definition?
f(x) = x|x|
f'(x) = \lim_{h \rightarrow 0} \frac{(x + h)|(x + h)| - x|x|}{h}
f'(x) = \lim_{h \rightarrow 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \rightarrow 0} \frac{x^2 + 2hx + h^2 - x^2}{h} = \lim_{h \rightarrow 0} \frac{2hx + h^2}{h} = \lim_{h \rightarrow 0} 2x + h
\boxed{f'(x) = 2|x|}
[/Color]
Last edited: