PhyPsy
- 34
- 0
The energy-momentum tensor for a perfect fluid is T^{ab}=(\rho_0+p)u^au^b-pg^{ab} (using the +--- Minkowski metric).
Using the conservation law \partial_bT^{ab}=0, I'm coming up with (\rho+\gamma^2p) [\frac{\partial\mathbb{u}}{{\partial}t}+ (\mathbb{u}\cdot\mathbb{\nabla})\mathbb{u}]= -{\nabla}p instead of \rho[\frac{\partial\mathbb{u}}{{\partial}t}+ (\mathbb{u}\cdot\mathbb{\nabla})\mathbb{u}]= -{\nabla}p (disregarding the body force part of the equation). Why is there a term for the part in brackets multiplied by \rho, but not for \gamma^2p?
Using the conservation law \partial_bT^{ab}=0, I'm coming up with (\rho+\gamma^2p) [\frac{\partial\mathbb{u}}{{\partial}t}+ (\mathbb{u}\cdot\mathbb{\nabla})\mathbb{u}]= -{\nabla}p instead of \rho[\frac{\partial\mathbb{u}}{{\partial}t}+ (\mathbb{u}\cdot\mathbb{\nabla})\mathbb{u}]= -{\nabla}p (disregarding the body force part of the equation). Why is there a term for the part in brackets multiplied by \rho, but not for \gamma^2p?