Cottontails
- 33
- 0
Homework Statement
There is a vector space with real entries, in ℝ3 with the subset X = <br /> \begin{pmatrix}<br /> 2\\<br /> -1\\<br /> -3<br /> \end{pmatrix}\\<br /> ,<br /> \begin{pmatrix}<br /> 4\\<br /> 0\\<br /> 1<br /> \end{pmatrix}\\<br /> ,<br /> \begin{pmatrix}<br /> 0\\<br /> 2\\<br /> 7<br /> \end{pmatrix}<br /> <br />
and you have to describe span(x) geometrically.
Homework Equations
In answering this question, I found the span of the subset through a<br /> \begin{pmatrix}<br /> 2\\<br /> -1\\<br /> -3<br /> \end{pmatrix}\\<br /> + b<br /> \begin{pmatrix}<br /> 4\\<br /> 0\\<br /> 1<br /> \end{pmatrix}\\<br /> + c\begin{pmatrix}<br /> 0\\<br /> 2\\<br /> 7<br /> \end{pmatrix}=<br /> \begin{pmatrix}<br /> x\\<br /> y\\<br /> z<br /> \end{pmatrix}<br />
The Attempt at a Solution
This formed the matrix:
<br /> \begin{pmatrix}<br /> 2 & 4 & 0 & | & x\\<br /> -1 & 0 & 2 & | & y\\<br /> -3 & 1 & 7 & | & z<br /> \end{pmatrix}<br />
Using row operations, I then made the matrix into reduced row echelon form and it was non-trivial with the final result being:
<br /> \begin{pmatrix}<br /> 1 & 2 & 0 & | & x/2\\<br /> 0 & 1 & 1 & | & x/4+y/2\\<br /> 0 & 0 & 0 & | & -x/4-7y/2+z<br /> \end{pmatrix}<br />
So, we can then interpret the span geometrically as the plane in ℝ3 with the equation -1/4x - 7y/2 + z=0
Is this right?
Last edited: