Detecting Single Photon Energy

  • Thread starter Thread starter splinewave
  • Start date Start date
  • Tags Tags
    Energy Photon
splinewave
Messages
4
Reaction score
0
I was taught that individual photons have discrete energies (E = hv) according to their wavelength (which is a smooth parameter). Why then do we use filters before the ccd camera in a microscope to detect photons of different wavelengths?

Isn't there a detector that can tell me the energy (and therefore the wavelength) of a single photon?
 
Physics news on Phys.org
splinewave said:
I was taught that individual photons have discrete energies (E = hv) according to their wavelength (which is a smooth parameter). Why then do we use filters before the ccd camera in a microscope to detect photons of different wavelengths?

Isn't there a detector that can tell me the energy (and therefore the wavelength) of a single photon?

For high energy photons, yes, detectors can tell the energy of a single photon. However, for photons in the visible range, their energy is so small, that we can barely detect them. In principle, one could, if the detection process is the photo-electric effect (ok), if the photo-electron would start out from a well-defined state of known energy (not ok in solid photocathodes, but in a gas, this can be ok), and if we could measure precisely the energy of the photo-electron (is not unthinkable).
But this is not the case for a photomultiplier.
As a CCD is an integrating device which accumulates the charge of many many photons in one pixel, and then measures the total charge, you see that this is even further away from measuring single-photon energies.

As I said, for X-ray photons, that's not a problem. Cooled germanium crystals can be used to measure the energy of such photons, and that's actually used a lot in spectroscopy. But for visible photons, the energy is too low to do that in practice.
 
There's apparently more to consider. For example, a real detector will have thermal motions of its own, which will cause it to see phase jitter in an arriving pure tone, and hence a line spread. Several basic issues of this kind have been discussed some years ago at the SPIE Nature of Light: What is a Photon conference, as I recently found http://www.phys.uconn.edu/~chandra/" .
 
Last edited by a moderator:
They won't tell you the energy of the incident photon, but avalanche photodiodes (APDs) are capable of detecting single photons with fairly high probability. Cooling an APD to cryogenic temperatures will lower the dark count rate.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top