Determinant of a specific, symmetric Toeplitz matrix

Click For Summary
SUMMARY

The discussion focuses on the determinant of a specific symmetric Toeplitz matrix defined as ##\mathbf{B}_n=[b_{ij}]_{n\times n}##, where the diagonal elements are ##\alpha##, the first off-diagonal elements are ##\beta##, and all other elements are 1. The example provided for ##\mathbf{B}_4## illustrates this structure. Participants conclude that there is no simple closed-form expression for the ratio of determinants ##\frac{\det(\mathbf{B}_n)}{\det(\mathbf{B}_{n-1})##, suggesting that the determinant must be expressed in terms of all summands and factors without cancellation.

PREREQUISITES
  • Understanding of symmetric Toeplitz matrices
  • Knowledge of determinant calculations
  • Familiarity with linear algebra concepts
  • Basic proficiency in mathematical notation and expressions
NEXT STEPS
  • Research properties of symmetric Toeplitz matrices
  • Study determinant calculation techniques for matrices
  • Explore closed-form expressions for matrix determinants
  • Investigate applications of determinants in linear algebra
USEFUL FOR

Mathematicians, students of linear algebra, and researchers interested in matrix theory and determinant properties will benefit from this discussion.

Rlwe
Messages
18
Reaction score
1
TL;DR
Calculation of a ratio of determinants for a family of specific, symmetric Toeplitz matrices
Let us define matrix ##\mathbf{B}_n=[b_{ij}]_{n\times n}## as follows $$[b_{ij}]_{n\times n}:=\begin{cases} b_{ij} = \alpha\,,\quad j=i\\ b_{ij}=\beta\,,\quad j=i\pm1\\ b_{ij}=1\,,\quad \text{else}\end{cases}\,,$$ where ##\alpha\,,\beta\in\mathbb{R}## and ##n\geq2##. ##\mathbf{B}_4##, for example, looks like this $$\mathbf{B}_4=\begin{bmatrix} \alpha & \beta & 1 & 1 \\ \beta & \alpha & \beta & 1\\ 1 & \beta & \alpha &\beta \\ 1 & 1& \beta& \alpha \end{bmatrix}\,.$$ Is there any simple, closed form expression for a ratio of determinants ##\frac{\det(\mathbf{B}_n)}{\det(\mathbf{B}_{n-1})}##?
 
Physics news on Phys.org
Not a simple one: I think you can only write out the determinant with all summands and factors and make that your formula. I doubt anything cancels out (tried a few low dimensional examples).
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K