Undergrad Determinant of a specific, symmetric Toeplitz matrix

Click For Summary
The discussion focuses on the determinant of a specific symmetric Toeplitz matrix defined by parameters α and β. The matrix is structured with α on the diagonal, β on the first off-diagonals, and 1 elsewhere. Participants express skepticism about finding a simple closed-form expression for the ratio of determinants, specifically ##\frac{\det(\mathbf{B}_n)}{\det(\mathbf{B}_{n-1})##. It is suggested that the determinant may only be expressible through its summands and factors without significant cancellations. Overall, the consensus leans towards the complexity of deriving a simplified ratio for the determinants.
Rlwe
Messages
18
Reaction score
1
TL;DR
Calculation of a ratio of determinants for a family of specific, symmetric Toeplitz matrices
Let us define matrix ##\mathbf{B}_n=[b_{ij}]_{n\times n}## as follows $$[b_{ij}]_{n\times n}:=\begin{cases} b_{ij} = \alpha\,,\quad j=i\\ b_{ij}=\beta\,,\quad j=i\pm1\\ b_{ij}=1\,,\quad \text{else}\end{cases}\,,$$ where ##\alpha\,,\beta\in\mathbb{R}## and ##n\geq2##. ##\mathbf{B}_4##, for example, looks like this $$\mathbf{B}_4=\begin{bmatrix} \alpha & \beta & 1 & 1 \\ \beta & \alpha & \beta & 1\\ 1 & \beta & \alpha &\beta \\ 1 & 1& \beta& \alpha \end{bmatrix}\,.$$ Is there any simple, closed form expression for a ratio of determinants ##\frac{\det(\mathbf{B}_n)}{\det(\mathbf{B}_{n-1})}##?
 
Physics news on Phys.org
Not a simple one: I think you can only write out the determinant with all summands and factors and make that your formula. I doubt anything cancels out (tried a few low dimensional examples).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K