Determine the minimum value of an expression

Click For Summary
SUMMARY

The minimum value of the expression \(\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}\) under the constraint \(x+y+z=1\) for positive \(x, y, z\) is achieved when \(x = y = z = \frac{1}{3}\). Substituting these values yields a minimum of \(3\left(\frac{1}{3} + 3\right)^{10} = 3\left(\frac{10}{3}\right)^{10}\). This conclusion is supported by the application of the AM-GM inequality and symmetry in the variables.

PREREQUISITES
  • Understanding of the AM-GM inequality
  • Familiarity with optimization techniques in calculus
  • Knowledge of symmetric functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the application of the AM-GM inequality in optimization problems
  • Explore symmetric functions and their properties
  • Learn about Lagrange multipliers for constrained optimization
  • Investigate the behavior of functions under transformations
USEFUL FOR

Mathematicians, students studying optimization techniques, and anyone interested in advanced algebraic expressions and inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $x,\,y,\,z>0$ and $x+y+z=1$, find the minimum of $\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}$.
 
Mathematics news on Phys.org
anemone said:
If $x,\,y,\,z>0$ and $x+y+z=1$, find the minimum of $\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}$.
for $x,y,z>0$
by using AM-GM inequality,
the minimum value will hold when :$x+\dfrac {1}{x}=y+\dfrac {1}{y}=z+\dfrac {1}{z}$
or $x=y=z=\dfrac{1}{3}$
the minimum value =$3\times (\dfrac {10}{3})^{10}$
 
Thanks Albert for participating and your solution! :)

Here is another solution that I want to share:

Given that $0<x,\,y,\,z<1$.

If we let $f(x)=\left(x+\dfrac{1}{x}\right)^{10}$ on $I=90,\,1)$, then $f$ is strictly convex on I because $f''(x)=90\left(x+\dfrac{1}{x}\right)^{8}\left(1-\dfrac{1}{x^2}\right)^{2}+10\left(x+\dfrac{1}{x}\right)^{9}\left(\dfrac{2}{x^3}\right)>0$ for $x\in I$.

By Jensen's inequality,

$\begin{align*}3f\left(\dfrac{x+y+z}{3}\right)&=3f\left(\dfrac{1}{3}\right)\\&=\dfrac{10^{10}}{3^9}\\&\le f(x)+f(y)+f(z)\\&=\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}\end{align*}$

Therefore, the minimum is $\dfrac{10^{10}}{3^9}$, attained when $x=y=z=\dfrac{1}{3}$.
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K