MHB Determine the minimum value of an expression

Click For Summary
The discussion focuses on finding the minimum value of the expression (x + 1/x)^{10} + (y + 1/y)^{10} + (z + 1/z)^{10} under the constraint x + y + z = 1, with x, y, z being positive. Participants explore various mathematical approaches and inequalities, such as the AM-GM inequality, to derive the minimum. The consensus suggests that the minimum occurs when x, y, and z are equal, specifically at x = y = z = 1/3. This leads to the calculated minimum value being 3 * (1/3 + 3)^{10}. The thread emphasizes the importance of symmetry in optimization problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $x,\,y,\,z>0$ and $x+y+z=1$, find the minimum of $\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}$.
 
Mathematics news on Phys.org
anemone said:
If $x,\,y,\,z>0$ and $x+y+z=1$, find the minimum of $\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}$.
for $x,y,z>0$
by using AM-GM inequality,
the minimum value will hold when :$x+\dfrac {1}{x}=y+\dfrac {1}{y}=z+\dfrac {1}{z}$
or $x=y=z=\dfrac{1}{3}$
the minimum value =$3\times (\dfrac {10}{3})^{10}$
 
Thanks Albert for participating and your solution! :)

Here is another solution that I want to share:

Given that $0<x,\,y,\,z<1$.

If we let $f(x)=\left(x+\dfrac{1}{x}\right)^{10}$ on $I=90,\,1)$, then $f$ is strictly convex on I because $f''(x)=90\left(x+\dfrac{1}{x}\right)^{8}\left(1-\dfrac{1}{x^2}\right)^{2}+10\left(x+\dfrac{1}{x}\right)^{9}\left(\dfrac{2}{x^3}\right)>0$ for $x\in I$.

By Jensen's inequality,

$\begin{align*}3f\left(\dfrac{x+y+z}{3}\right)&=3f\left(\dfrac{1}{3}\right)\\&=\dfrac{10^{10}}{3^9}\\&\le f(x)+f(y)+f(z)\\&=\left(x+\dfrac{1}{x}\right)^{10}+\left(y+\dfrac{1}{y}\right)^{10}+\left(z+\dfrac{1}{z}\right)^{10}\end{align*}$

Therefore, the minimum is $\dfrac{10^{10}}{3^9}$, attained when $x=y=z=\dfrac{1}{3}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K