Determining groups not sure how to prove it.

  • Thread starter Thread starter lostNfound
  • Start date Start date
  • Tags Tags
    Groups
lostNfound
Messages
12
Reaction score
0
I'm going through a abstract algebra book I found and am trying to learn more about group theory by going through some of the proofs and practice sets, but am having trouble with the following:

Prove that G={a+b*sqrt(2) | a,b E R; a,b not both 0} is a group under ordinary multiplication.

Any help would be awesome!
 
Physics news on Phys.org
lostNfound said:
I'm going through a abstract algebra book I found and am trying to learn more about group theory by going through some of the proofs and practice sets, but am having trouble with the following:

Prove that G={a+b*sqrt(2) | a,b E R; a,b not both 0} is a group under ordinary multiplication.

Any help would be awesome!

Where are you stuck? You know that you need to verify each of the group axioms. Is your set closed under the given binary operation? Is there an identity? etc.
 
lostNfound said:
So I know that in order to prove it is a group, there are several things that have to be confirmed, including associativity, closure, inverses, and identity. Associativity seems like it can be assumed, but the others till have to be proved. I'm having most of my trouble with the closure and inverse proofs, especially that for closure.

Closure is easy, you just take two arbirtrary elements a+b sqrt(2) and c + d sqrt(2), compute the product and show that it also is a member of G.

Inverses are a little harder, altough a very common trick that you should definitely know can be used to get

\frac { 1 } { a + b \sqrt(2) } in the form: c + d sqrt(2)
 
So I know that in order to prove it is a group, there are several things that have to be confirmed, including associativity, closure, inverses, and identity. Associativity seems like it can be assumed, but the others till have to be proved. I'm having most of my trouble with the closure and inverse proofs, especially that for closure.
Why did you delete this? I wouldn't say you should assume associativity but certainly you can just note that multiplication of real numbers is associative and this is just a subset of the real numbers. To show closure write the product of two such numbers as (a+ b\sqrt{2})(c+ d\sqrt{2}) and actually do the multiplication. What do you get? Show that it can be written as u+ v\sqrt{2} by showing what u and v must be. The identity is 1= 1+ 0\sqrt{2}, of course.

And the multiplicative inverse of a+ b\sqrt{2} is 1/(a+ b\sqrt{2}). Rationalize the denominator to show how that can be written in the form u+ v\sqrt{2}.
 
Sorry I deleted that. I was trying to delete the post so people didn't feel like they needed to keep answering it. I was able to work out the answer on my own earlier. Thanks for the help though. I think we are on the same page.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top