Determining the magnetic force on an electron

Click For Summary
SUMMARY

The discussion focuses on calculating the magnetic force on an electron moving through a magnetic field of 0.0200 T. The magnetic force is determined using the formula FM = qvB, resulting in a force of 1.6 x 10-14 N directed west. The radius of the electron's circular path is calculated as 1.42 x 10-3 m, using the relationship r = mv/qB. Clarifications regarding the application of the right-hand rule (RHR) are provided, emphasizing the correct orientation for determining the force direction on negatively charged particles.

PREREQUISITES
  • Understanding of magnetic force calculations using FM = qvB
  • Familiarity with the right-hand rule for determining force direction
  • Knowledge of circular motion dynamics, specifically centripetal force (FC)
  • Basic concepts of electron properties, including charge and mass
NEXT STEPS
  • Study the application of the right-hand rule for different charge types
  • Explore the implications of magnetic fields on charged particles in motion
  • Learn about the Lorentz force and its applications in physics
  • Investigate the effects of varying magnetic field strengths on particle trajectories
USEFUL FOR

This discussion is beneficial for physics students, educators, and anyone interested in electromagnetism, particularly those studying the behavior of charged particles in magnetic fields.

chef99
Messages
75
Reaction score
4

Homework Statement



A magnetic field of 0.0200 T [up] is created in a region.a) Find the initial magnetic force on an electron initially moving at 5.00 x106 m/s [N] in the field.b) What is the radius of the circular path? Make a sketch showing the path of the electron.

Homework Equations


FM = qvB

FC = FM

The Attempt at a Solution


[/B]
FM = qvB

Fm = (1.60 x10-19C)(5.00 x106)(0.0200T)

FM = 1.6 x10-14 C

Using the right-hand rule, point the thumb in the opposite direction of the velocity, as the charge is negative. So thumb points south. The fingers point [up], in the direction of the field and the palm points west.

Therefore the direction of the magnetic force is 1.6 x10-14 C [west]b)

The electron will move with uniform circular motion.

Fnet = FM -but in circular motion, Fnet = FC

FC = FM

mv / r = qB

r = mv / qB

r = (9.11 x10-31kg)(5.00 x106) / (1.60 x10-19C)(0.0200T)

r = 1.42 x10-3m

The electron will experience a uniform circular motion with a radius of 1.42 x10-3m
I'm pretty sure I have this right, the one thing I'm not very confident about is whether I used the right-hand rule properly or not. Furthermore, assuming that the direction of the magnetic force is [west] is correct, is it in fact [west], or should it be
. The reason I used west is because the magnetic force on the electron was [N], not [up]. Any feedback is appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
I think you did most of it right, but are Coulombs the correct units for force?
 
You did use the RHR correctly, but when you say that the magnetic force on the electron is up [N], this is not correct. When I use the RHR I use my pointer finger to point in the direction of velocity, (since it is the first term in the cross product), then my middle finger points in the direction of the magnetic field(second term B). So with q(v x B) = F, then your thumb will point in the correct direction for the force on a positively charged particle. Since yours is negative, you just take the opposite direction of your thumb (or use your left hand entirely and take the direction of your thumb). With v moving [N], and B pointing [up], you should get your thumb pointing in [E], then you must take the opposite direction since your particle is negative (electron). Otherwise the math is correct. Hope this helps!
 
NateTheGreatt77 said:
You did use the RHR correctly, but when you say that the magnetic force on the electron is up [N], this is not correct. When I use the RHR I use my pointer finger to point in the direction of velocity, (since it is the first term in the cross product), then my middle finger points in the direction of the magnetic field(second term B). So with q(v x B) = F, then your thumb will point in the correct direction for the force on a positively charged particle. Since yours is negative, you just take the opposite direction of your thumb (or use your left hand entirely and take the direction of your thumb). With v moving [N], and B pointing [up], you should get your thumb pointing in [E], then you must take the opposite direction since your particle is negative (electron). Otherwise the math is correct. Hope this helps!

Thanks that makes a lot more sense. just to clarify, I got the direction of the magnetic force right, (1.6 x10-14 C [W]) just how I used the RHR was incorrect?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K