I think vanhees is on the right track here, and king.vitamin has a few misleading points.
Causality has to do with the time ordering of causes and effects (and can be defined without respect to the speed of light--which is a relativistic definition for causality). If B is an effect of the cause A, then the principle of causality would state that A occurred no later than B. It is really a rather simple concept if you do not concern yourself with relativistic effects, whereby A could appear to occur before B in one reference frame, but the opposite may be true in another reference frame.
Determinism means that: given the state of a system at some time t, the system's state at some later time t' can be deduced with 100% certainty. Whether QM is deterministic is a subtle question. The system's state |ψ> in fact evolves deterministically under the Schrodinger equation when it is not being measured. A non-deterministic element enters when a measurement is performed on |ψ>. So in the absence of measurements, QM is deterministic--but of course any sort of experiment requires measurements to be performed. Whether or not this non-deterministic feature is "real" depends on your interpretation of QM--for example in the Many-Worlds Interpretation, we think of the theory as entirely deterministic (|ψ> always evolves deterministically according to the SE), with the stochastic nature of subjective experience being the perplexing part. On the other hand, the Copenhagen interpretation states that measurements actually cause non-deterministic things to happen to |ψ>, and this is similarly perplexing.
In quantum mechanics, we can do experiments which seem to indicate instantaneous causality between distant measurements--and this would violate the strict causality principle king.vitamin mentioned. (The principle of causality I stated above, though, would work fine.) But QM does obey causality in a non-local way.
Furthermore, even though there are instantaneous causes and effects in QM, they cannot be used to send messages between people. It turns out that in QM, the transmission of "information" from one person to another does in fact respect the relativistic principle of (local) causality that king.vitamin has given. So we can't use QM to do sneaky things like instantaneously sending the results of horse races to a friend so she can place a bet before the race results arrive by an EM signal.