slonopotam
- 5
- 0
calculate
<br /> \iint_{M}^{}\vec{F}\vec{dS}<br />
where
<br /> \vec{F}=(e^y,ye^x,x^2y)<br />
M is a part of hyperboloid x^2+y^2
which is located at 0<=x<=1 and 0<=y<=1 ,and its normal vector points outside
like this :
http://i28.tinypic.com/f9p63r.gif
i am used to solve it like this
<br /> \iint_{M}^{}\vec{F}\vec{dS}=\iint_{D}\frac{\vec{F}\cdot<br /> \vec{N}}{|\vec{N}\cdot\vec{K}|}dxdy<br />
<br /> \vec{N}=(2x,2y,-1)<br />
<br /> \iint_{M}^{}\vec{F}\vec{dS}=\iint_{D}\frac{(e^y,ye^x,x^2y) \cdot<br /> (2x,2y,-1)}{1}dxdy<br />
now i convert into polar coordinates
x^2+y^2=r
<br /> =\int_{0}^{2\pi}\int_{0}^{1}\frac{(e^y,ye^x,x^2y) \cdot (2x,2y,-1)}{1}rdrd\theta<br />
how to what are the intervals for r
i just guessed its from 0 to 1
i don't know how to know the upper interval here
except that
is this method ok?
<br /> \iint_{M}^{}\vec{F}\vec{dS}<br />
where
<br /> \vec{F}=(e^y,ye^x,x^2y)<br />
M is a part of hyperboloid x^2+y^2
which is located at 0<=x<=1 and 0<=y<=1 ,and its normal vector points outside
like this :
http://i28.tinypic.com/f9p63r.gif
i am used to solve it like this
<br /> \iint_{M}^{}\vec{F}\vec{dS}=\iint_{D}\frac{\vec{F}\cdot<br /> \vec{N}}{|\vec{N}\cdot\vec{K}|}dxdy<br />
<br /> \vec{N}=(2x,2y,-1)<br />
<br /> \iint_{M}^{}\vec{F}\vec{dS}=\iint_{D}\frac{(e^y,ye^x,x^2y) \cdot<br /> (2x,2y,-1)}{1}dxdy<br />
now i convert into polar coordinates
x^2+y^2=r
<br /> =\int_{0}^{2\pi}\int_{0}^{1}\frac{(e^y,ye^x,x^2y) \cdot (2x,2y,-1)}{1}rdrd\theta<br />
how to what are the intervals for r
i just guessed its from 0 to 1
i don't know how to know the upper interval here
except that
is this method ok?