Vector fields confuses me. What are the differences between (##t## could be any variable, not just time):(adsbygoogle = window.adsbygoogle || []).push({});

1. If the position vector don't have an argument, ##\mathbf{r}=x\mathbf{\hat e}_x+y\mathbf{\hat e}_y+z\mathbf{\hat e}_z=(x,y,z)## so

##\mathbf{E}(\mathbf{r},t)=E_x(\mathbf{r},t)\mathbf{\hat e}_x+E_y(\mathbf{r},t)\mathbf{\hat e}_y+E_z(\mathbf{r},t)\mathbf{\hat e}_z##

2. The position vector have an argument ##t##, ##\mathbf{r}(t)=x(t)\mathbf{\hat e}_x+y(t)\mathbf{\hat e}_y+z(t)\mathbf{\hat e}_z=(x(t),y(t),z(t))## so

##\mathbf{E}(\mathbf{r}(t),t)=E_x(\mathbf{r}(t),t)\mathbf{\hat e}_x+E_y(\mathbf{r}(t),t)\mathbf{\hat e}_y+ E_z(\mathbf{r}(t),t)\mathbf{\hat e}_z##

3. The position vector have a different argument, say ##u## and ##u\neq t##, ##\mathbf{r}(u)=x(u)\mathbf{\hat e}_x+y(u)\mathbf{\hat e}_y+z(u)\mathbf{\hat e}_z=(x(u),y(u),z(u))## so

##\mathbf{E}(\mathbf{r}(u),t)=E_x(\mathbf{r}(u),t)\mathbf{\hat e}_x+

E_y(\mathbf{r}(u),t)\mathbf{\hat e}_y+E_z(\mathbf{r}(u),t)\mathbf{\hat e}_z##

Are all vector fields? Are all ##\mathbb{R}^4 \rightarrow \mathbb{R}^3##?

Also, in the context of Maxwell's equations, the fields are denoted without an argument, just ##\mathbf{E}##, ##\mathbf{B}## etc. Is it just an abbreviation for any of the above?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Different types of vector fields?

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**