Differential Equation - Change of Variable

cse63146
Messages
435
Reaction score
0

Homework Statement



Find the general solution of

y' = - \frac{x}{y} - \sqrt{(\frac{x}{y})^2 + 1}


Homework Equations





The Attempt at a Solution



I let y = ux -> y' + xu' + u

xu' + u = - u - \sqrt{u^2+1}

u' = \frac{-2u - \sqrt{u^2 + 1}}{x}

\frac{du}{-2u - \sqrt{u^2 + 1}} = \frac{dx}{x}

now I'm supposed to integrate both sides, just not sure how to find the integral of \frac{du}{-2u - \sqrt{u^2 + 1}}
 
Physics news on Phys.org
cse63146 said:

Homework Statement



Find the general solution of

y' = - \frac{x}{y} - \sqrt{(\frac{x}{y})^2 + 1}


Homework Equations





The Attempt at a Solution



I let y = ux -> y' + xu' + u

xu' + u = - u - \sqrt{u^2+1}

u' = \frac{-2u - \sqrt{u^2 + 1}}{x}

\frac{du}{-2u - \sqrt{u^2 + 1}} = \frac{dx}{x}

now I'm supposed to integrate both sides, just not sure how to find the integral of \frac{du}{-2u - \sqrt{u^2 + 1}}

From your substitution, y = ux, it follows that u = y/x. You replaced x/y by u, instead of 1/u.

Using the same substitution, I get
\frac{-u du}{1 + u^2 + \sqrt{1 + u^2}} = \frac{dx}{x}

That's still pretty ugly on the left side, but it might be amenable to completing the square in the denominator.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top